Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: G. Marion x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
C. Asselin De Beauville
,
R. H. Petit
,
G. Marion
, and
J. P. Lacaux

Abstract

Two and one-half years of observations and measurements of isolated maritime clouds in Guadeloupe (Lesser Antilles) are presented. Raindrop spectra are measured on the ground with a Joss device and an Epson PX8 Analyser. The greatest rainfall rate R is about 60 mm h−1. In the raindrop spectral distributions, localized drop diameter peaks are present at 0.6, 1.0, 1.8 and 3.0 mm. These diameters are compared to those measured and calculated by other authors. The high humidity in the subcloud layer and a negligible effect of the collisional breakup mechanism make rain spectra on the ground very representative of those at the cloud base level. When the rainfall rates increase, the spectra shift towards larger diameters. Thus, different spectra distributions correspond to different values of the rainfall rate. During a given shower, spectra with small drops are first observed, followed by ones with larger drops, and small drops reappear at the end of the shower. This shift cannot be attributed to the coalescence-breakup mechanism. It corresponds to a sorting of the drops. The time evolution of these spectral distributions and the negligible effect of collisional breakup during a shower allow to propose a simplified model of single maritime clouds. Cloud thickness, water contents and the updraft speeds are related to the rainfall rates. The existence of preferred drop diameters makes the relationship simple but this result can be generalized to spectra that do not show peaks. A fit to the shape of one spectral peak is suggested with a practical application. A determination of R from the maximum values of the peaks is proposed.

Full access
Edward G. Patton
,
Peter P. Sullivan
,
Branko Kosović
,
Jimy Dudhia
,
Larry Mahrt
,
Mark Žagar
, and
Tomislav Marić

Abstract

A combination of turbulence-resolving large-eddy simulations and observations are used to examine the influence of swell amplitude and swell propagation angle on surface drag. Based on the analysis a new surface roughness parameterization with nonequilibrium wave effects is proposed. The surface roughness accounts for swell amplitude and wavelength and its relative motion with respect to the mean wind direction. The proposed parameterization is tested in uncoupled three-dimensional Weather and Research Forecasting (WRF) simulations at grid sizes near 1 km where we explore potential implications of our modifications for two-way coupled atmosphere–wave models. Wind–wave misalignment likely explains the large scatter in observed nondimensional surface roughness under swell-dominated conditions. Andreas et al.’s relationship between friction velocity and the 10-m wind speed under predicts the increased drag produced by misaligned winds and waves. Incorporating wave-state (speed and direction) influences in parameterizations improves predictive skill. In a broad sense, these results suggest that one needs information on winds and wave state to upscale buoy measurements.

Open access
Eric Gilleland
,
Gregor Skok
,
Barbara G. Brown
,
Barbara Casati
,
Manfred Dorninger
,
Marion P. Mittermaier
,
Nigel Roberts
, and
Laurence J. Wilson

Abstract

As part of the second phase of the spatial forecast verification intercomparison project (ICP), dubbed the Mesoscale Verification Intercomparison in Complex Terrain (MesoVICT) project, a new set of idealized test fields is prepared. This paper describes these new fields and their rationale and uses them to analyze a number of summary measures associated with distance and geometric-based approaches. The results provide guidance about how they inform about performance under various scenarios. The new case comparisons are grouped into four categories: (i) pathological situations such as when a variable is zero valued at all grid points; (ii) circular events aimed at evaluating how different methods handle contrived situations, such as equal but opposite translations, the presence of multiple events of same/different size, boundary effects, and the influence of the positioning of events in the domain; (iii) elliptical events representing simplified scenarios that mimic commonly encountered weather phenomena in complex terrain; and (iv) cases aimed at analyzing how the verification methods handle small-scale scattered events, very large events with holes (e.g., a small portion of clear sky on a cloudy overcast day), and the presence of noise in one or both fields. Results show that all analyzed measures perform poorly in the pathological setting. They are either not able to provide a result at all or they instigate a special rule to prescribe a value resulting in erratic results. The analysis also showed that methods provide similar information in many situations, but that each has its positive properties along with certain unique limitations.

Open access
Manfred Dorninger
,
Eric Gilleland
,
Barbara Casati
,
Marion P. Mittermaier
,
Elizabeth E. Ebert
,
Barbara G. Brown
, and
Laurence J. Wilson

Abstract

Recent advancements in numerical weather prediction (NWP) and the enhancement of model resolution have created the need for more robust and informative verification methods. In response to these needs, a plethora of spatial verification approaches have been developed in the past two decades. A spatial verification method intercomparison was established in 2007 with the aim of gaining a better understanding of the abilities of the new spatial verification methods to diagnose different types of forecast errors. The project focused on prescribed errors for quantitative precipitation forecasts over the central United States. The intercomparison led to a classification of spatial verification methods and a cataloging of their diagnostic capabilities, providing useful guidance to end users, model developers, and verification scientists. A decade later, NWP systems have continued to increase in resolution, including advances in high-resolution ensembles. This article describes the setup of a second phase of the verification intercomparison, called the Mesoscale Verification Intercomparison over Complex Terrain (MesoVICT). MesoVICT focuses on the application, capability, and enhancement of spatial verification methods to deterministic and ensemble forecasts of precipitation, wind, and temperature over complex terrain. Importantly, this phase also explores the issue of analysis uncertainty through the use of an ensemble of meteorological analyses.

Full access
Gregory C. Johnson
,
Rick Lumpkin
,
Tim Boyer
,
Francis Bringas
,
Ivona Cetinić
,
Don P. Chambers
,
Lijing Cheng
,
Shenfu Dong
,
Richard A. Feely
,
Baylor Fox-Kemper
,
Eleanor Frajka-Williams
,
Bryan A. Franz
,
Yao Fu
,
Meng Gao
,
Jay Garg
,
John Gilson
,
Gustavo Goni
,
Benjamin D. Hamlington
,
Helene T. Hewitt
,
William R. Hobbs
,
Zeng-Zhen Hu
,
Boyin Huang
,
Svetlana Jevrejeva
,
William E. Johns
,
Sato Katsunari
,
John J. Kennedy
,
Marion Kersalé
,
Rachel E. Killick
,
Eric Leuliette
,
Ricardo Locarnini
,
M. Susan Lozier
,
John M. Lyman
,
Mark A. Merrifield
,
Alexey Mishonov
,
Gary T. Mitchum
,
Ben I. Moat
,
R. Steven Nerem
,
Dirk Notz
,
Renellys C. Perez
,
Sarah G. Purkey
,
Darren Rayner
,
James Reagan
,
Claudia Schmid
,
David A. Siegel
,
David A. Smeed
,
Paul W. Stackhouse
,
William Sweet
,
Philip R. Thompson
,
Denis L. Volkov
,
Rik Wanninkhof
,
Robert A. Weller
,
Caihong Wen
,
Toby K. Westberry
,
Matthew J. Widlansky
,
Josh K. Willis
,
Lisan Yu
, and
Huai-Min Zhang
Free access
Taneil Uttal
,
Sandra Starkweather
,
James R. Drummond
,
Timo Vihma
,
Alexander P. Makshtas
,
Lisa S. Darby
,
John F. Burkhart
,
Christopher J. Cox
,
Lauren N. Schmeisser
,
Thomas Haiden
,
Marion Maturilli
,
Matthew D. Shupe
,
Gijs De Boer
,
Auromeet Saha
,
Andrey A. Grachev
,
Sara M. Crepinsek
,
Lori Bruhwiler
,
Barry Goodison
,
Bruce McArthur
,
Von P. Walden
,
Edward J. Dlugokencky
,
P. Ola G. Persson
,
Glen Lesins
,
Tuomas Laurila
,
John A. Ogren
,
Robert Stone
,
Charles N. Long
,
Sangeeta Sharma
,
Andreas Massling
,
David D. Turner
,
Diane M. Stanitski
,
Eija Asmi
,
Mika Aurela
,
Henrik Skov
,
Konstantinos Eleftheriadis
,
Aki Virkkula
,
Andrew Platt
,
Eirik J. Førland
,
Yoshihiro Iijima
,
Ingeborg E. Nielsen
,
Michael H. Bergin
,
Lauren Candlish
,
Nikita S. Zimov
,
Sergey A. Zimov
,
Norman T. O’Neill
,
Pierre F. Fogal
,
Rigel Kivi
,
Elena A. Konopleva-Akish
,
Johannes Verlinde
,
Vasily Y. Kustov
,
Brian Vasel
,
Viktor M. Ivakhov
,
Yrjö Viisanen
, and
Janet M. Intrieri

Abstract

International Arctic Systems for Observing the Atmosphere (IASOA) activities and partnerships were initiated as a part of the 2007–09 International Polar Year (IPY) and are expected to continue for many decades as a legacy program. The IASOA focus is on coordinating intensive measurements of the Arctic atmosphere collected in the United States, Canada, Russia, Norway, Finland, and Greenland to create synthesis science that leads to an understanding of why and not just how the Arctic atmosphere is evolving. The IASOA premise is that there are limitations with Arctic modeling and satellite observations that can only be addressed with boots-on-the-ground, in situ observations and that the potential of combining individual station and network measurements into an integrated observing system is tremendous. The IASOA vision is that by further integrating with other network observing programs focusing on hydrology, glaciology, oceanography, terrestrial, and biological systems it will be possible to understand the mechanisms of the entire Arctic system, perhaps well enough for humans to mitigate undesirable variations and adapt to inevitable change.

Full access
Gregory C. Johnson
,
Rick Lumpkin
,
Simone R. Alin
,
Dillon J. Amaya
,
Molly O. Baringer
,
Tim Boyer
,
Peter Brandt
,
Brendan R. Carter
,
Ivona Cetinić
,
Don P. Chambers
,
Lijing Cheng
,
Andrew U. Collins
,
Cathy Cosca
,
Ricardo Domingues
,
Shenfu Dong
,
Richard A. Feely
,
Eleanor Frajka-Williams
,
Bryan A. Franz
,
John Gilson
,
Gustavo Goni
,
Benjamin D. Hamlington
,
Josefine Herrford
,
Zeng-Zhen Hu
,
Boyin Huang
,
Masayoshi Ishii
,
Svetlana Jevrejeva
,
John J. Kennedy
,
Marion Kersalé
,
Rachel E. Killick
,
Peter Landschützer
,
Matthias Lankhorst
,
Eric Leuliette
,
Ricardo Locarnini
,
John M. Lyman
,
John J. Marra
,
Christopher S. Meinen
,
Mark A. Merrifield
,
Gary T. Mitchum
,
Ben I. Moat
,
R. Steven Nerem
,
Renellys C. Perez
,
Sarah G. Purkey
,
James Reagan
,
Alejandra Sanchez-Franks
,
Hillary A. Scannell
,
Claudia Schmid
,
Joel P. Scott
,
David A. Siegel
,
David A. Smeed
,
Paul W. Stackhouse
,
William Sweet
,
Philip R. Thompson
,
Joaquin A. Triñanes
,
Denis L. Volkov
,
Rik Wanninkhof
,
Robert A. Weller
,
Caihong Wen
,
Toby K. Westberry
,
Matthew J. Widlansky
,
Anne C. Wilber
,
Lisan Yu
, and
Huai-Min Zhang
Free access
Molly Baringer
,
Mariana B. Bif
,
Tim Boyer
,
Seth M. Bushinsky
,
Brendan R. Carter
,
Ivona Cetinić
,
Don P. Chambers
,
Lijing Cheng
,
Sanai Chiba
,
Minhan Dai
,
Catia M. Domingues
,
Shenfu Dong
,
Andrea J. Fassbender
,
Richard A. Feely
,
Eleanor Frajka-Williams
,
Bryan A. Franz
,
John Gilson
,
Gustavo Goni
,
Benjamin D. Hamlington
,
Zeng-Zhen Hu
,
Boyin Huang
,
Masayoshi Ishii
,
Svetlana Jevrejeva
,
William E. Johns
,
Gregory C. Johnson
,
Kenneth S. Johnson
,
John Kennedy
,
Marion Kersalé
,
Rachel E. Killick
,
Peter Landschützer
,
Matthias Lankhorst
,
Tong Lee
,
Eric Leuliette
,
Feili Li
,
Eric Lindstrom
,
Ricardo Locarnini
,
Susan Lozier
,
John M. Lyman
,
John J. Marra
,
Christopher S. Meinen
,
Mark A. Merrifield
,
Gary T. Mitchum
,
Ben Moat
,
Didier Monselesan
,
R. Steven Nerem
,
Renellys C. Perez
,
Sarah G. Purkey
,
Darren Rayner
,
James Reagan
,
Nicholas Rome
,
Alejandra Sanchez-Franks
,
Claudia Schmid
,
Joel P. Scott
,
Uwe Send
,
David A. Siegel
,
David A. Smeed
,
Sabrina Speich
,
Paul W. Stackhouse Jr.
,
William Sweet
,
Yuichiro Takeshita
,
Philip R. Thompson
,
Joaquin A. Triñanes
,
Martin Visbeck
,
Denis L. Volkov
,
Rik Wanninkhof
,
Robert A. Weller
,
Toby K. Westberry
,
Matthew J. Widlansky
,
Susan E. Wijffels
,
Anne C. Wilber
,
Lisan Yu
,
Weidong Yu
, and
Huai-Min Zhang
Free access