Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Geoffrey J. DiMego x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Eric Rogers
,
Geoffrey J. DiMego
,
Joseph P. Gerrity
,
Ralph A. Petersen
,
Brian D. Schmidt
, and
Deirdre M. Kann

Analyses and forecasts for the first 2 weeks of the Genesis of Atlantic Lows Experiment (GALE) are described. These fields were produced using the National Meteorological Center (NMC) Regional Analysis and Forecast System (RAFS). Two sets of analyses and forecasts were constructed: one using the NMC operational database only (Level IIIa), and one using the NMC data merged with high-density observations taken during GALE (Level IIIb).

During the first 14 days of GALE, supplemental data were collected throughout two Intensive Observing Periods (IOPs). Comparisons of the Level IIIa and IIIb analyses over the GALE observing region in the southeastern United States indicated a worsening of the geopotential height analysis at operational NWS rawinsonde sites using the supplemental IIIb data. This was caused by inconsistencies in the height measurements at the high-density GALE rawinsonde sites. Such patterns were not observed in the wind and temperature analyses.

During IOP No. 1, the Level IIIa and IIIb Nested Grid Model (NGM) forecasts were nearly identical. For IOP No. 2, one forecast cycle saw an improvement in the Level IIIb forecasts due to offshore GALE dropwindsonde data, while another was improved by the inclusion of late-arriving rawinsonde data in the IIIb analysis. The inland, high-density GALE soundings, however, had a negligible impact on NGM forecasts during the entire 12-day period.

Full access
Jordan G. Powers
,
Joseph B. Klemp
,
William C. Skamarock
,
Christopher A. Davis
,
Jimy Dudhia
,
David O. Gill
,
Janice L. Coen
,
David J. Gochis
,
Ravan Ahmadov
,
Steven E. Peckham
,
Georg A. Grell
,
John Michalakes
,
Samuel Trahan
,
Stanley G. Benjamin
,
Curtis R. Alexander
,
Geoffrey J. Dimego
,
Wei Wang
,
Craig S. Schwartz
,
Glen S. Romine
,
Zhiquan Liu
,
Chris Snyder
,
Fei Chen
,
Michael J. Barlage
,
Wei Yu
, and
Michael G. Duda

Abstract

Since its initial release in 2000, the Weather Research and Forecasting (WRF) Model has become one of the world’s most widely used numerical weather prediction models. Designed to serve both research and operational needs, it has grown to offer a spectrum of options and capabilities for a wide range of applications. In addition, it underlies a number of tailored systems that address Earth system modeling beyond weather. While the WRF Model has a centralized support effort, it has become a truly community model, driven by the developments and contributions of an active worldwide user base. The WRF Model sees significant use for operational forecasting, and its research implementations are pushing the boundaries of finescale atmospheric simulation. Future model directions include developments in physics, exploiting emerging compute technologies, and ever-innovative applications. From its contributions to research, forecasting, educational, and commercial efforts worldwide, the WRF Model has made a significant mark on numerical weather prediction and atmospheric science.

Full access