Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Harper L. Simmons x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Thilo Klenz
,
Harper L. Simmons
,
Luca Centurioni
,
Jonathan M. Lilly
,
Jeffrey J. Early
, and
Verena Hormann

Abstract

The Minimet is a Lagrangian surface drifter measuring near-surface winds in situ. Ten Minimets were deployed in the Iceland Basin over the course of two field seasons in 2018 and 2019. We compared Minimet wind measurements to coincident ship winds from the R/V Armstrong meteorology package and to hourly ERA5 reanalysis winds and found that the Minimets accurately captured wind variability across a variety of time scales. Comparisons between the ship, Minimets, and ERA5 winds point to significant discrepancies between the in situ wind measurements and ERA5, with the most reasonable explanation being related to spatial offsets of small-scale storm structures in the reanalysis model. After a general assessment of the Minimet performance, we compare estimates of wind power input in the near-inertial band using the Minimet winds and their measured drift to those using ERA5 winds and the Minimet drift. Minimet-derived near-inertial wind power estimates exceed those from Minimet drift combined with ERA5 winds by about 42%. The results highlight the importance of accurately capturing small-scale, high-frequency wind events and suggest that in situ Minimet measurements are beneficial for accurately quantifying near-inertial wind work on the ocean.

Significance Statement

In this study we introduce a novel, freely drifting wind measurement platform, the Minimet. After an initial validation of Minimet sea surface wind measurements against independent wind measurements from a nearby research vessel, we investigate their utility in context of the near-inertial work done by the wind on the ocean, which is important for the ocean’s energy budget. We find Minimet near-inertial wind work estimates exceed those estimated using winds from a state-of-the-art wind product by 42%. Our results indicate that capturing storm events happening on time scales less than 12 h is crucial for accurately quantifying near-inertial wind work on the ocean, making wind measurements from platforms such as the Minimet invaluable for these analyses.

Open access
Zhongxiang Zhao
,
Matthew H. Alford
,
James B. Girton
,
Luc Rainville
, and
Harper L. Simmons

Abstract

A global map of open-ocean mode-1 M2 internal tides is constructed using sea surface height (SSH) measurements from multiple satellite altimeters during 1992–2012, representing a 20-yr coherent internal tide field. A two-dimensional plane wave fit method is employed to 1) suppress mesoscale contamination by extracting internal tides with both spatial and temporal coherence and 2) separately resolve multiple internal tidal waves. Global maps of amplitude, phase, energy, and flux of mode-1 M2 internal tides are presented. The M2 internal tides are mainly generated over topographic features, including continental slopes, midocean ridges, and seamounts. Internal tidal beams of 100–300 km width are observed to propagate hundreds to thousands of kilometers. Multiwave interference of some degree is widespread because of the M2 internal tide’s numerous generation sites and long-range propagation. The M2 internal tide propagates across the critical latitudes for parametric subharmonic instability (28.8°S/N) with little energy loss, consistent with the 2006 Internal Waves across the Pacific (IWAP) field measurements. In the eastern Pacific Ocean, the M2 internal tide loses significant energy in propagating across the equator; in contrast, little energy loss is observed in the equatorial zones of the Atlantic, Indian, and western Pacific Oceans. Global integration of the satellite observations yields a total energy of 36 PJ (1 PJ = 1015 J) for all the coherent mode-1 M2 internal tides. Finally, satellite observed M2 internal tides compare favorably with field mooring measurements and a global eddy-resolving numerical model.

Full access
Kim I. Martini
,
Harper L. Simmons
,
Chase A. Stoudt
, and
Jennifer K. Hutchings

Abstract

The evolution of the near-inertial internal wavefield from ice-free summertime conditions to ice-covered wintertime conditions is examined using data from a yearlong deployment of six moorings on the Beaufort continental slope from August 2008 to August 2009. When ice is absent, from July to October, energy is efficiently transferred from the atmosphere to the ocean, generating near-inertial internal waves. When ice is present, from November to June, storms also cause near-inertial oscillations in the ice and mixed layer, but kinetic energy is weaker and oscillations are quickly damped. Damping is dependent on ice pack strength and morphology. Decay scales are longer in early winter (November–January) when the new ice pack is weaker and more mobile, decreasing in late winter (February–June) when the ice pack is stronger and more rigid. Efficiency is also reduced, as comparisons of atmospheric energy available for internal wave generation to mixed layer kinetic energies indicate that a smaller percentage of atmospheric energy is transferred to near-inertial motions when ice concentrations are >90%. However, large kinetic energies and shears are observed during an event on 16 December and spectral energy is elevated above Garrett–Munk levels, coinciding with the largest energy flux predicted during the deployment. A significant amount of near-inertial energy is episodically transferred to the internal wave band from the atmosphere even when the ocean is ice covered; however, damping by ice and less efficient energy transfer still leads to low Arctic internal wave energy in the near-inertial band. Increased kinetic energy below 300 m when ice is forming suggests some events may generate internal waves that radiate into the Arctic Ocean interior.

Full access
Zhongxiang Zhao
,
Matthew H. Alford
,
Harper L. Simmons
,
Dmitry Brazhnikov
, and
Rob Pinkel

Abstract

The M2 internal tide in the Tasman Sea is investigated using sea surface height measurements made by multiple altimeter missions from 1992 to 2012. Internal tidal waves are extracted by two-dimensional plane wave fits in 180 km by 180 km windows. The results show that the Macquarie Ridge radiates three internal tidal beams into the Tasman Sea. The northern and southern beams propagate respectively into the East Australian Current and the Antarctic Circumpolar Current and become undetectable to satellite altimetry. The central beam propagates across the Tasman Sea, impinges on the Tasmanian continental slope, and partially reflects. The observed propagation speeds agree well with theoretical values determined from climatological ocean stratification. Both the northern and central beams refract about 15° toward the equator because of the beta effect. Following a concave submarine ridge in the source region, the central beam first converges around 45.5°S, 155.5°E and then diverges beyond the focal region. The satellite results reveal two reflected internal tidal beams off the Tasmanian slope, consistent with previous numerical simulations and glider measurements. The total energy flux from the Macquarie Ridge into the Tasman Sea is about 2.2 GW, of which about half is contributed by the central beam. The central beam loses little energy in its first 1000-km propagation, for which the likely reasons include flat bottom topography and weak mesoscale eddies.

Full access
Samuel Boury
,
Robert S. Pickart
,
Philippe Odier
,
Peigen Lin
,
Min Li
,
Elizabeth C. Fine
,
Harper L. Simmons
,
Jennifer A. MacKinnon
, and
Thomas Peacock

Abstract

Recent measurements and modeling indicate that roughly half of the Pacific-origin water exiting the Chukchi Sea shelf through Barrow Canyon forms a westward-flowing current known as the Chukchi Slope Current (CSC), yet the trajectory and fate of this current is presently unknown. In this study, through the combined use of shipboard velocity data and information from five profiling floats deployed as quasi-Lagrangian particles, we delve further into the trajectory and the fate of the CSC. During the period of observation, from early September to early October 2018, the CSC progressed far to the north into the Chukchi Borderland. The northward excursion is believed to result from the current negotiating Hanna Canyon on the Chukchi slope, consistent with potential vorticity dynamics. The volume transport of the CSC, calculated using a set of shipboard transects, decreased from approximately 2 Sv (1 Sv ≡ 106 m3 s−1) to near zero over a period of 4 days. This variation can be explained by a concomitant change in the wind stress curl over the Chukchi shelf from positive to negative. After turning northward, the CSC was disrupted and four of the five floats veered offshore, with one of the floats permanently leaving the current. It is hypothesized that the observed disruption was due to an anticyclonic eddy interacting with the CSC, which has been observed previously. These results demonstrate that, at times, the CSC can get entrained into the Beaufort Gyre.

Free access
Jody M. Klymak
,
Harper L. Simmons
,
Dmitry Braznikov
,
Samuel Kelly
,
Jennifer A. MacKinnon
,
Matthew H. Alford
,
Robert Pinkel
, and
Jonathan D. Nash

Abstract

The reflection of a low-mode internal tide on the Tasman continental slope is investigated using simulations of realistic and simplified topographies. The slope is supercritical to the internal tide, which should predict a large fraction of the energy reflected. However, the response to the slope is complicated by a number of factors: the incoming beam is confined laterally, it impacts the slope at an angle, there is a roughly cylindrical rise directly offshore of the slope, and a leaky slope-mode wave is excited. These effects are isolated in simulations that simplify the topography. To separate the incident from the reflected signal, a response without the reflector is subtracted from the total response to arrive at a reflected signal. The real slope reflects approximately 65% of the mode-1 internal tide as mode 1, less than two-dimensional linear calculations predict, because of the three-dimensional concavity of the topography. It is also less than recent glider estimates, likely as a result of along-slope inhomogeneity. The inhomogeneity of the response comes from the Tasman Rise that diffracts the incoming tidal beam into two beams: one focused along beam and one diffracted to the north. Along-slope inhomogeneity is enhanced by a partially trapped, superinertial slope wave that propagates along the continental slope, locally removing energy from the deep-water internal tide and reradiating it into the deep water farther north. This wave is present even in a simplified, straight slope topography; its character can be predicted from linear resonance theory, and it represents up to 30% of the local energy budget.

Full access
Olavo B. Marques
,
Matthew H. Alford
,
Robert Pinkel
,
Jennifer A. MacKinnon
,
Jody M. Klymak
,
Jonathan D. Nash
,
Amy F. Waterhouse
,
Samuel M. Kelly
,
Harper L. Simmons
, and
Dmitry Braznikov

Abstract

Mode-1 internal tides can propagate far away from their generation sites, but how and where their energy is dissipated is not well understood. One example is the semidiurnal internal tide generated south of New Zealand, which propagates over a thousand kilometers before impinging on the continental slope of Tasmania. In situ observations and model results from a recent process-study experiment are used to characterize the spatial and temporal variability of the internal tide on the southeastern Tasman slope, where previous studies have quantified large reflectivity. As expected, a standing wave pattern broadly explains the cross-slope and vertical structure of the observed internal tide. However, model and observations highlight several additional features of the internal tide on the continental slope. The standing wave pattern on the sloping bottom as well as small-scale bathymetric corrugations lead to bottom-enhanced tidal energy. Over the corrugations, larger tidal currents and isopycnal displacements are observed along the trough as opposed to the crest. Despite the long-range propagation of the internal tide, most of the variability in energy density on the slope is accounted by the spring–neap cycle. However, the timing of the semidiurnal spring tides is not consistent with a single remote wave and is instead explained by the complex interference between remote and local tides on the Tasman slope. These observations suggest that identifying the multiple waves in an interference pattern and their interaction with small-scale topography is an important step in modeling internal energy and dissipation.

Full access
Joseph K. Ansong
,
Brian K. Arbic
,
Harper L. Simmons
,
Matthew H. Alford
,
Maarten C. Buijsman
,
Patrick G. Timko
,
James G. Richman
,
Jay F. Shriver
, and
Alan J. Wallcraft

Abstract

The evidence for, baroclinic energetics of, and geographic distribution of parametric subharmonic instability (PSI) arising from both diurnal and semidiurnal tides in a global ocean general circulation model is investigated using 1/12.5° and 1/25° simulations that are forced by both atmospheric analysis fields and the astronomical tidal potential. The paper examines whether PSI occurs in the model, and whether it accounts for a significant fraction of the tidal baroclinic energy loss. Using energy transfer calculations and bispectral analyses, evidence is found for PSI around the critical latitudes of the tides. The intensity of both diurnal and semidiurnal PSI in the simulations is greatest in the upper ocean, consistent with previous results from idealized simulations, and quickly drops off about 5° from the critical latitudes. The sign of energy transfer depends on location; the transfer is positive (from the tides to subharmonic waves) in some locations and negative in others. The net globally integrated energy transfer is positive in all simulations and is 0.5%–10% of the amount of energy required to close the baroclinic energy budget in the model. The net amount of energy transfer is about an order of magnitude larger in the 1/25° semidiurnal simulation than the 1/12.5° one, implying the dependence of the rate of energy transfer on model resolution.

Full access
Amy F. Waterhouse
,
Jennifer A. MacKinnon
,
Jonathan D. Nash
,
Matthew H. Alford
,
Eric Kunze
,
Harper L. Simmons
,
Kurt L. Polzin
,
Louis C. St. Laurent
,
Oliver M. Sun
,
Robert Pinkel
,
Lynne D. Talley
,
Caitlin B. Whalen
,
Tycho N. Huussen
,
Glenn S. Carter
,
Ilker Fer
,
Stephanie Waterman
,
Alberto C. Naveira Garabato
,
Thomas B. Sanford
, and
Craig M. Lee

Abstract

The authors present inferences of diapycnal diffusivity from a compilation of over 5200 microstructure profiles. As microstructure observations are sparse, these are supplemented with indirect measurements of mixing obtained from (i) Thorpe-scale overturns from moored profilers, a finescale parameterization applied to (ii) shipboard observations of upper-ocean shear, (iii) strain as measured by profiling floats, and (iv) shear and strain from full-depth lowered acoustic Doppler current profilers (LADCP) and CTD profiles. Vertical profiles of the turbulent dissipation rate are bottom enhanced over rough topography and abrupt, isolated ridges. The geography of depth-integrated dissipation rate shows spatial variability related to internal wave generation, suggesting one direct energy pathway to turbulence. The global-averaged diapycnal diffusivity below 1000-m depth is O(10−4) m2 s−1 and above 1000-m depth is O(10−5) m2 s−1. The compiled microstructure observations sample a wide range of internal wave power inputs and topographic roughness, providing a dataset with which to estimate a representative global-averaged dissipation rate and diffusivity. However, there is strong regional variability in the ratio between local internal wave generation and local dissipation. In some regions, the depth-integrated dissipation rate is comparable to the estimated power input into the local internal wave field. In a few cases, more internal wave power is dissipated than locally generated, suggesting remote internal wave sources. However, at most locations the total power lost through turbulent dissipation is less than the input into the local internal wave field. This suggests dissipation elsewhere, such as continental margins.

Full access
Igor V. Polyakov
,
Leonid A. Timokhov
,
Vladimir A. Alexeev
,
Sheldon Bacon
,
Igor A. Dmitrenko
,
Louis Fortier
,
Ivan E. Frolov
,
Jean-Claude Gascard
,
Edmond Hansen
,
Vladimir V. Ivanov
,
Seymour Laxon
,
Cecilie Mauritzen
,
Don Perovich
,
Koji Shimada
,
Harper L. Simmons
,
Vladimir T. Sokolov
,
Michael Steele
, and
John Toole

Abstract

Analysis of modern and historical observations demonstrates that the temperature of the intermediate-depth (150–900 m) Atlantic water (AW) of the Arctic Ocean has increased in recent decades. The AW warming has been uneven in time; a local ∼1°C maximum was observed in the mid-1990s, followed by an intervening minimum and an additional warming that culminated in 2007 with temperatures higher than in the 1990s by 0.24°C. Relative to climatology from all data prior to 1999, the most extreme 2007 temperature anomalies of up to 1°C and higher were observed in the Eurasian and Makarov Basins. The AW warming was associated with a substantial (up to 75–90 m) shoaling of the upper AW boundary in the central Arctic Ocean and weakening of the Eurasian Basin upper-ocean stratification. Taken together, these observations suggest that the changes in the Eurasian Basin facilitated greater upward transfer of AW heat to the ocean surface layer. Available limited observations and results from a 1D ocean column model support this surmised upward spread of AW heat through the Eurasian Basin halocline. Experiments with a 3D coupled ice–ocean model in turn suggest a loss of 28–35 cm of ice thickness after ∼50 yr in response to the 0.5 W m−2 increase in AW ocean heat flux suggested by the 1D model. This amount of thinning is comparable to the 29 cm of ice thickness loss due to local atmospheric thermodynamic forcing estimated from observations of fast-ice thickness decline. The implication is that AW warming helped precondition the polar ice cap for the extreme ice loss observed in recent years.

Full access