Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Hong Wang x
  • Journal of Physical Oceanography x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Bingrong Sun
,
Shengpeng Wang
,
Man Yuan
,
Hong Wang
,
Zhao Jing
,
Zhaohui Chen
, and
Lixin Wu

Abstract

Near-inertial internal waves (NIWs) are thought to play an important role in powering the turbulent diapycnal mixing in the ocean interior. Nevertheless, the energy flux into NIWs below the surface boundary layer (SBL) in the global ocean is still poorly understood. This key problem is addressed in this study based on a Community Earth System Model (CESM) simulation with a horizontal resolution of ~0.1° for its oceanic component and ~0.25° for its atmospheric component. The CESM shows good skill in simulating NIWs globally, reproducing the observed magnitude and spatial pattern of surface NIW currents and wind power on NIWs (W I ). The simulated downward flux of NIW energy (F SBL) at the SBL base is positive everywhere. Its quasi-global integral (excluding the region within 5°S–5°N) is 0.13 TW, about one-third the value of W I . The ratio of local F SBL to W I varies substantially over the space. It exhibits an increasing trend with the enstrophy of balanced motions (BMs) and a decreasing trend with W I . The kinetic energy transfer from model-resolved BMs to NIWs is positive from the SBL base to 600 m but becomes negative farther downward. The quasi-global integral of energy transfer below the SBL base is two orders of magnitude smaller than that of F SBL, suggesting the resolved BMs in the CESM simulations making negligible contributions to power NIWs in the ocean interior.

Free access
Kai-Chieh Yang
,
Sen Jan
,
Yiing Jang Yang
,
Ming-Huei Chang
,
Joe Wang
,
Shih-Hong Wang
,
Steven R. Ramp
,
D. Benjamin Reeder
, and
Dong S. Ko

Abstract

Observations from a Seaglider, two pressure-sensor-equipped inverted echo sounders (PIESs), and a thermistor chain (T-chain) mooring were used to determine the waveform and timing of internal solitary waves (ISWs) over the continental slope east of Dongsha Atoll. The Korteweg–de Vries (KdV) and Dubreil–Jacotin–Long (DJL) equations supplemented the data from repeated profiling by the glider at a fixed position (depth ∼1017 m) during 19–24 May 2019. The glider-recorded pressure perturbations were used to compute the rarely measured vertical velocity (w) with a static glider flight model. After removing the internal tide–caused vertical velocity, the w of the eight mode-1 ISWs ranged from −0.35 to 0.36 m s−1 with an uncertainty of ±0.005 m s−1 due to turbulent oscillations and measurement error. The horizontal velocity profiles, wave speeds, and amplitudes of the eight ISWs were further derived from the KdV and DJL equations using the glider-observed w and potential density profiles. The mean speed of the corresponding ISW from the PIES deployed at ∼2000 m depth to the T-chain moored at 500 m depth and the 19°C isotherm displacement computed from the T-chain were used to validate the waveform derived from KdV and DJL. The validation suggests that the DJL equation provides reasonably representative wave speed and amplitude for the eight ISWs compared to the KdV equation. Stand-alone glider data provide near-real-time hydrography and vertical velocities for mode-1 ISWs and are useful for characterizing the anatomy of ISWs and validating numerical simulations of these waves.

Significance Statement

Internal solitary waves (ISWs), which vertically displace isotherms by approximately 100 m, considerably affect nutrient pumping, turbulent mixing, acoustic propagation, underwater navigation, bedform generation, and engineering structures in the ocean. A complete understanding of their anatomy and dynamics has many applications, such as predicting the timing and position of mode-1 ISWs and evaluating their environmental impacts. To improve our understanding of these waves and validate the two major theories based on the Korteweg–de Vries (KdV) and Dubreil–Jacotin–Long (DJL) equations, the hydrography data collected from stand-alone, real-time profiling of an autonomous underwater vehicle (Seaglider) have proven to be useful in determining the waveform of these transbasin ISWs in deep water. The solutions to the DJL equation show good agreement with the properties of mode-1 ISWs obtained from the rare in situ data, whereas the solutions to the KdV equation underestimate these properties. Seaglider observations also provide in situ data to evaluate the performance of numerical simulations and forecasting of ISWs in the northern South China Sea.

Open access
Hemantha W. Wijesekera
,
Conrad A. Luecke
,
David W. Wang
,
Ewa Jarosz
,
Sergio DeRada
,
William J. Teague
,
Kyung-Il Chang
,
Jae Hak Lee
,
Hong-Sik Min
, and
SungHyun Nam

Abstract

Small-scale processes at the southwestern boundary of the Ulleung Basin (UB) in the Japan/East Sea (JES) were examined using combined ship-based and moored observations along with model output. Model results show baroclinic semidiurnal tides are generated at the shelf break and corresponding slope connecting the Korea/Tsushima Strait with the UB and propagate into the UB with large barotropic-to-baroclinic energy conversion over the slope. Observations show high-frequency internal wave packets and indicate strong velocity shear and energetic turbulence associated with baroclinic tides in the stratified bottom layer. Solitary-like waves with frequencies from 0.2N to 0.5N (buoyancy frequency N) were found at the edge of the shelf break with supercritical flow. For subcritical flow, a hydraulic jump formed over the shelf break with weakly dispersive internal lee waves with frequencies varying from 0.5N to N. These high-frequency lee waves were trapped in the stratified bottom layer, with wave stress similar to the turbulent stress near the bottom. The power loss due to turbulent bottom drag can be an important factor for energy loss associated with the hydraulic jump. Turbulent kinetic energy dissipation rates of ∼10−4 W kg−1 were found. Large downward heat and salt fluxes below the high-salinity core mix warm/salty Tsushima Current Water with cold/low-salinity JES Intermediate Water. Mixing over the shelf break could be very important to the JES circulation since the calculated diapycnal upwelling (1–6 m day−1) at the shelf break and slope is substantially greater than the basin-averaged estimate from chemical tracers and modeling studies.

Significant Statement

The Japan/East Sea (JES) is a marginal sea, enclosed by Japan, Korea, and Russia. This study describes mixing processes over the shelf break connecting the northern Korea/Tsushima Strait (KTS) with the southern Ulleung Basin (UB), where the warm, high-salinity Kuroshio water carried by the Tsushima Current interacts with southward-flowing subsurface water masses in the JES. Our analysis suggests that the shelf break and slope between the KTS and the UB are vital areas for water-mass exchange in the southern JES. The enhanced mixing at the shelf break may impact water masses and circulation over the entire JES.

Open access