Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Isaac Ginis x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Morris A. Bender
,
Timothy Marchok
,
Robert E. Tuleya
,
Isaac Ginis
,
Vijay Tallapragada
, and
Stephen J. Lord

Abstract

The hurricane project at the National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluid Dynamics Laboratory (GFDL) was established in 1970. By the mid-1970s pioneering research had led to the development of a new hurricane model. As the reputation of the model grew, GFDL was approached in 1986 by the director of the National Meteorological Center about establishing a collaboration between the two federal organizations to transition the model into an operational modeling system. After a multiyear effort by GFDL scientists to develop a system that could support rigorous requirements of operations, and multiyear testing had demonstrated its superior performance compared to existing guidance products, operational implementation was made in 1995. Through collaboration between GFDL and the U.S. Navy, the model was also made operational at Fleet Numerical Meteorology and Oceanography Center in 1996. GFDL scientists continued to support and improve the model during the next two decades by collaborating with other scientists at GFDL, the National Centers for Environmental Prediction (NCEP) Environmental Modeling Center (EMC), 1 the National Hurricane Center, the U.S. Navy, the University of Rhode Island (URI), Old Dominion University, and the NOAA Hurricane Research Division. Scientists at GFDL, URI, and EMC collaborated to transfer key components of the GFDL model to the NWS new Hurricane Weather Research and Forecasting Model (HWRF) that became operational in 2007. The purpose of the article is to highlight the critical role of these collaborations. It is hoped that the experiences of the authors will serve as an example of how such collaboration can benefit the nation with improved weather guidance products.

Full access
Daniel Rosenfeld
,
William L. Woodley
,
Alexander Khain
,
William R. Cotton
,
Gustavo Carrió
,
Isaac Ginis
, and
Joseph H. Golden

Improving the forecasts of the intensity of tropical cyclones (TCs) remains a major challenge. One possibility for improvement is consideration of the effects that aerosols have on tropical clouds and cyclones. The authors have been pursuing this under the Hurricane Aerosol and Microphysics Program, supported by the U.S. Department of Homeland Security. This was done through observations of aerosols and resulting cloud microphysical structure within tropical cyclones and simulating their effects using high-resolution TC models that treat cloud internal processes explicitly. In addition to atmospheric aerosols, special attention was given also to the impact of the intense sea-spray-generated aerosols and convective rolls in the hurricane boundary layer (BL) under hurricane- force winds.

The results of simulations and observations show that TC ingestion of aerosols that serve as cloud condensation nuclei can lead to significant reductions in their intensities. This is caused by redistribution of the precipitation and latent heating to more vigorous convection in the storm periphery that cools the low levels and interferes with the inflow of energy to the eyewall, hence making the eye larger and the maximum winds weaker. The microphysical effects of the pollution and dust aerosols occur mainly at the peripheral clouds. Closer to the circulation center, the hurricane-force winds raise intense sea spray that is lifted efficiently in the roll vortices that form in the BL and coalesce into rain of mostly seawater already at cloud base, which dominates the microstructure and affects the dynamics of the inner convective cloud bands.

Full access