Search Results

You are looking at 1 - 10 of 14 items for :

  • Author or Editor: James J. Moore x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
James T. Moore
,
Fred H. Glass
,
Charles E. Graves
,
Scott M. Rochette
, and
Marc J. Singer

Abstract

Twenty-one warm-season heavy-rainfall events in the central United States produced by mesoscale convective systems (MCSs) that developed above and north of a surface boundary are examined to define the environmental conditions and physical processes associated with these phenomena. Storm-relative composites of numerous kinematic and thermodynamic fields are computed by centering on the heavy-rain-producing region of the parent elevated MCS. Results reveal that the heavy-rain region of elevated MCSs is located on average about 160 km north of a quasi-stationary frontal zone, in a region of low-level moisture convergence that is elongated westward on the cool side of the boundary. The MCS is located within the left-exit region of a south-southwesterly low-level jet (LLJ) and the right-entrance region of an upper-level jet positioned well north of the MCS site. The LLJ is directed toward a divergence maximum at 250 hPa that is coincident with the MCS site. Near-surface winds are light and from the southeast within a boundary layer that is statically stable and cool. Winds veer considerably with height (about 140°) from 850 to 250 hPa, a layer associated with warm-air advection. The MCS is located in a maximum of positive equivalent potential temperature θ e advection, moisture convergence, and positive thermal advection at 850 hPa. Composite fields at 500 hPa show that the MCS forms in a region of weak anticyclonic curvature in the height field with marginal positive vorticity advection. Even though surface-based stability fields indicate stable low-level air, there is a layer of convectively unstable air with maximum-θ e CAPE values of more than 1000 J kg−1 in the vicinity of the MCS site and higher values upstream. Maximum-θ e convective inhibition (CIN) values over the MCS centroid site are small (less than 40 J kg−1) while to the south convection is limited by large values of CIN (greater than 60 J kg−1). Surface-to-500-hPa composite average relative humidity values are about 70%, and composite precipitable water values average about 3.18 cm (1.25 in.). The representativeness of the composite analysis is also examined. Last, a schematic conceptual model based upon the composite fields is presented that depicts the typical environment favorable for the development of elevated thunderstorms that lead to heavy rainfall.

Full access
Terence J. O’Kane
,
Dougal T. Squire
,
Paul A. Sandery
,
Vassili Kitsios
,
Richard J. Matear
,
Thomas S. Moore
,
James S. Risbey
, and
Ian G. Watterson

Abstract

Recent studies have shown that regardless of model configuration, skill in predicting El Niño–Southern Oscillation (ENSO), in terms of target month and forecast lead time, remains largely dependent on the temporal characteristics of the boreal spring predictability barrier. Continuing the 2019 study by O’Kane et al., we compare multiyear ensemble ENSO forecasts from the Climate Analysis Forecast Ensemble (CAFE) to ensemble forecasts from state-of-the-art dynamical coupled models in the North American Multimodel Ensemble (NMME) project. The CAFE initial perturbations are targeted such that they are specific to tropical Pacific thermocline variability. With respect to individual NMME forecasts and multimodel ensemble averages, the CAFE forecasts reveal improvements in skill when predicting ENSO at lead times greater than 6 months, in particular when predictability is most strongly limited by the boreal spring barrier. Initial forecast perturbations generated exclusively as disturbances in the equatorial Pacific thermocline are shown to improve the forecast skill at longer lead times in terms of anomaly correlation and the random walk sign test. Our results indicate that augmenting current initialization methods with initial perturbations targeting instabilities specific to the tropical Pacific thermocline may improve long-range ENSO prediction.

Free access
Amanda S. Black
,
James S. Risbey
,
Christopher C. Chapman
,
Didier P. Monselesan
,
Thomas S. Moore II
,
Michael J. Pook
,
Doug Richardson
,
Bernadette M. Sloyan
,
Dougal T. Squire
, and
Carly R. Tozer

Abstract

Large-scale cloud features referred to as cloudbands are known to be related to widespread and heavy rain via the transport of tropical heat and moisture to higher latitudes. The Australian northwest cloudband is such a feature that has been identified in simple searches of satellite imagery but with limited investigation of its atmospheric dynamical support. An accurate, long-term climatology of northwest cloudbands is key to robustly assessing these events. A dynamically based search algorithm has been developed that is guided by the presence and orientation of the subtropical jet stream. This jet stream is the large-scale atmospheric feature that determines the development and alignment of a cloudband. Using a new 40-yr dataset of cloudband events compiled by this search algorithm, composite atmospheric and ocean surface conditions over the period 1979–2018 have been assessed. Composite cloudband upper-level flow revealed a tilted low pressure trough embedded in a Rossby wave train. Composites of vertically integrated water vapor transport centered around the jet maximum during northwest cloudband events reveal a distinct atmospheric river supplying tropical moisture for cloudband rainfall. Parcel backtracking indicated multiple regions of moisture support for cloudbands. A thermal wind anomaly orientated with respect to an enhanced sea surface temperature gradient over the Indian Ocean was also a key composite cloudband feature. A total of 300 years of a freely coupled control simulation of the ACCESS-D system was assessed for its ability to simulate northwest cloudbands. Composite analysis of model cloudbands compared reasonably well to reanalysis despite some differences in seasonality and frequency of occurrence.

Full access
Keith Lindsay
,
Gordon B. Bonan
,
Scott C. Doney
,
Forrest M. Hoffman
,
David M. Lawrence
,
Matthew C. Long
,
Natalie M. Mahowald
,
J. Keith Moore
,
James T. Randerson
, and
Peter E. Thornton

Abstract

Version 1 of the Community Earth System Model, in the configuration where its full carbon cycle is enabled, is introduced and documented. In this configuration, the terrestrial biogeochemical model, which includes carbon–nitrogen dynamics and is present in earlier model versions, is coupled to an ocean biogeochemical model and atmospheric CO2 tracers. The authors provide a description of the model, detail how preindustrial-control and twentieth-century experiments were initialized and forced, and examine the behavior of the carbon cycle in those experiments. They examine how sea- and land-to-air CO2 fluxes contribute to the increase of atmospheric CO2 in the twentieth century, analyze how atmospheric CO2 and its surface fluxes vary on interannual time scales, including how they respond to ENSO, and describe the seasonal cycle of atmospheric CO2 and its surface fluxes. While the model broadly reproduces observed aspects of the carbon cycle, there are several notable biases, including having too large of an increase in atmospheric CO2 over the twentieth century and too small of a seasonal cycle of atmospheric CO2 in the Northern Hemisphere. The biases are related to a weak response of the carbon cycle to climatic variations on interannual and seasonal time scales and to twentieth-century anthropogenic forcings, including rising CO2, land-use change, and atmospheric deposition of nitrogen.

Full access
Robert A. Houze Jr.
,
Shuyi S. Chen
,
Wen-Chau Lee
,
Robert F. Rogers
,
James A. Moore
,
Gregory J. Stossmeister
,
Michael M. Bell
,
Jasmine Cetrone
,
Wei Zhao
, and
S. Rita Brodzik

The Hurricane Rainband and Intensity Change Experiment (RAINEX) used three P3 aircraft aided by high-resolution numerical modeling and satellite communications to investigate the 2005 Hurricanes Katrina, Ophelia, and Rita. The aim was to increase the understanding of tropical cyclone intensity change by interactions between a tropical cyclone's inner core and rainbands. All three aircraft had dual-Doppler radars, with the Electra Doppler Radar (ELDORA) on board the Naval Research Laboratory's P3 aircraft, providing particularly detailed Doppler radar data. Numerical model forecasts helped plan the aircraft missions, and innovative communications and data transfer in real time allowed the flights to be coordinated from a ground-based operations center. The P3 aircraft released approximately 600 dropsondes in locations targeted for optimal coordination with the Doppler radar data, as guided by the operations center. The storms were observed in all stages of development, from tropical depression to category 5 hurricane. The data from RAINEX are readily available through an online Field Catalog and RAINEX Data Archive. The RAINEX dataset is illustrated in this article by a preliminary analysis of Hurricane Rita, which was documented by multiaircraft flights on five days 1) while a tropical storm, 2) while rapidly intensifying to a category 5 hurricane, 3) during an eye-wall replacement, 4) when the hurricane became asymmetric upon encountering environmental shear, and 5) just prior to landfall.

Full access
Gretchen Keppel-Aleks
,
James T. Randerson
,
Keith Lindsay
,
Britton B. Stephens
,
J. Keith Moore
,
Scott C. Doney
,
Peter E. Thornton
,
Natalie M. Mahowald
,
Forrest M. Hoffman
,
Colm Sweeney
,
Pieter P. Tans
,
Paul O. Wennberg
, and
Steven C. Wofsy

Abstract

Changes in atmospheric CO2 variability during the twenty-first century may provide insight about ecosystem responses to climate change and have implications for the design of carbon monitoring programs. This paper describes changes in the three-dimensional structure of atmospheric CO2 for several representative concentration pathways (RCPs 4.5 and 8.5) using the Community Earth System Model–Biogeochemistry (CESM1-BGC). CO2 simulated for the historical period was first compared to surface, aircraft, and column observations. In a second step, the evolution of spatial and temporal gradients during the twenty-first century was examined. The mean annual cycle in atmospheric CO2 was underestimated for the historical period throughout the Northern Hemisphere, suggesting that the growing season net flux in the Community Land Model (the land component of CESM) was too weak. Consistent with weak summer drawdown in Northern Hemisphere high latitudes, simulated CO2 showed correspondingly weak north–south and vertical gradients during the summer. In the simulations of the twenty-first century, CESM predicted increases in the mean annual cycle of atmospheric CO2 and larger horizontal gradients. Not only did the mean north–south gradient increase due to fossil fuel emissions, but east–west contrasts in CO2 also strengthened because of changing patterns in fossil fuel emissions and terrestrial carbon exchange. In the RCP8.5 simulation, where CO2 increased to 1150 ppm by 2100, the CESM predicted increases in interannual variability in the Northern Hemisphere midlatitudes of up to 60% relative to present variability for time series filtered with a 2–10-yr bandpass. Such an increase in variability may impact detection of changing surface fluxes from atmospheric observations.

Full access
Terence J. O’Kane
,
Paul A. Sandery
,
Vassili Kitsios
,
Pavel Sakov
,
Matthew A. Chamberlain
,
Dougal T. Squire
,
Mark A. Collier
,
Christopher C. Chapman
,
Russell Fiedler
,
Dylan Harries
,
Thomas S. Moore
,
Doug Richardson
,
James S. Risbey
,
Benjamin J. E. Schroeter
,
Serena Schroeter
,
Bernadette M. Sloyan
,
Carly Tozer
,
Ian G. Watterson
,
Amanda Black
,
Courtney Quinn
, and
Richard J. Matear

Abstract

The CSIRO Climate retrospective Analysis and Forecast Ensemble system, version 1 (CAFE60v1) provides a large (96 member) ensemble retrospective analysis of the global climate system from 1960 to present with sufficiently many realizations and at spatiotemporal resolutions suitable to enable probabilistic climate studies. Using a variant of the ensemble Kalman filter, 96 climate state estimates are generated over the most recent six decades. These state estimates are constrained by monthly mean ocean, atmosphere, and sea ice observations such that their trajectories track the observed state while enabling estimation of the uncertainties in the approximations to the retrospective mean climate over recent decades. For the atmosphere, we evaluate CAFE60v1 in comparison to empirical indices of the major climate teleconnections and blocking with various reanalysis products. Estimates of the large-scale ocean structure, transports, and biogeochemistry are compared to those derived from gridded observational products and climate model projections (CMIP). Sea ice (extent, concentration, and variability) and land surface (precipitation and surface air temperatures) are also compared to a variety of model and observational products. Our results show that CAFE60v1 is a useful, comprehensive, and unique data resource for studying internal climate variability and predictability, including the recent climate response to anthropogenic forcing on multiyear to decadal time scales.

Open access
James D. Doyle
,
Jonathan R. Moskaitis
,
Joel W. Feldmeier
,
Ronald J. Ferek
,
Mark Beaubien
,
Michael M. Bell
,
Daniel L. Cecil
,
Robert L. Creasey
,
Patrick Duran
,
Russell L. Elsberry
,
William A. Komaromi
,
John Molinari
,
David R. Ryglicki
,
Daniel P. Stern
,
Christopher S. Velden
,
Xuguang Wang
,
Todd Allen
,
Bradford S. Barrett
,
Peter G. Black
,
Jason P. Dunion
,
Kerry A. Emanuel
,
Patrick A. Harr
,
Lee Harrison
,
Eric A. Hendricks
,
Derrick Herndon
,
William Q. Jeffries
,
Sharanya J. Majumdar
,
James A. Moore
,
Zhaoxia Pu
,
Robert F. Rogers
,
Elizabeth R. Sanabia
,
Gregory J. Tripoli
, and
Da-Lin Zhang

Abstract

Tropical cyclone (TC) outflow and its relationship to TC intensity change and structure were investigated in the Office of Naval Research Tropical Cyclone Intensity (TCI) field program during 2015 using dropsondes deployed from the innovative new High-Definition Sounding System (HDSS) and remotely sensed observations from the Hurricane Imaging Radiometer (HIRAD), both on board the NASA WB-57 that flew in the lower stratosphere. Three noteworthy hurricanes were intensively observed with unprecedented horizontal resolution: Joaquin in the Atlantic and Marty and Patricia in the eastern North Pacific. Nearly 800 dropsondes were deployed from the WB-57 flight level of ∼60,000 ft (∼18 km), recording atmospheric conditions from the lower stratosphere to the surface, while HIRAD measured the surface winds in a 50-km-wide swath with a horizontal resolution of 2 km. Dropsonde transects with 4–10-km spacing through the inner cores of Hurricanes Patricia, Joaquin, and Marty depict the large horizontal and vertical gradients in winds and thermodynamic properties. An innovative technique utilizing GPS positions of the HDSS reveals the vortex tilt in detail not possible before. In four TCI flights over Joaquin, systematic measurements of a major hurricane’s outflow layer were made at high spatial resolution for the first time. Dropsondes deployed at 4-km intervals as the WB-57 flew over the center of Hurricane Patricia reveal in unprecedented detail the inner-core structure and upper-tropospheric outflow associated with this historic hurricane. Analyses and numerical modeling studies are in progress to understand and predict the complex factors that influenced Joaquin’s and Patricia’s unusual intensity changes.

Open access
John T. Sullivan
,
Timothy Berkoff
,
Guillaume Gronoff
,
Travis Knepp
,
Margaret Pippin
,
Danette Allen
,
Laurence Twigg
,
Robert Swap
,
Maria Tzortziou
,
Anne M. Thompson
,
Ryan M. Stauffer
,
Glenn M. Wolfe
,
James Flynn
,
Sally E. Pusede
,
Laura M. Judd
,
William Moore
,
Barry D. Baker
,
Jay Al-Saadi
, and
Thomas J. McGee

Abstract

Coastal regions have historically represented a significant challenge for air quality investigations because of water–land boundary transition characteristics and a paucity of measurements available over water. Prior studies have identified the formation of high levels of ozone over water bodies, such as the Chesapeake Bay, that can potentially recirculate back over land to significantly impact populated areas. Earth-observing satellites and forecast models face challenges in capturing the coastal transition zone where small-scale meteorological dynamics are complex and large changes in pollutants can occur on very short spatial and temporal scales. An observation strategy is presented to synchronously measure pollutants “over land” and “over water” to provide a more complete picture of chemical gradients across coastal boundaries for both the needs of state and local environmental management and new remote sensing platforms. Intensive vertical profile information from ozone lidar systems and ozonesondes, obtained at two main sites, one over land and the other over water, are complemented by remote sensing and in situ observations of air quality from ground-based, airborne (both personned and unpersonned), and shipborne platforms. These observations, coupled with reliable chemical transport simulations, such as the National Oceanic and Atmospheric Administration (NOAA) National Air Quality Forecast Capability (NAQFC), are expected to lead to a more fully characterized and complete land–water interaction observing system that can be used to assess future geostationary air quality instruments, such as the National Aeronautics and Space Administration (NASA) Tropospheric Emissions: Monitoring of Pollution (TEMPO), and current low-Earth-orbiting satellites, such as the European Space Agency’s Sentinel-5 Precursor (S5-P) with its Tropospheric Monitoring Instrument (TROPOMI).

Open access
David C. Fritts
,
Ronald B. Smith
,
Michael J. Taylor
,
James D. Doyle
,
Stephen D. Eckermann
,
Andreas Dörnbrack
,
Markus Rapp
,
Bifford P. Williams
,
P.-Dominique Pautet
,
Katrina Bossert
,
Neal R. Criddle
,
Carolyn A. Reynolds
,
P. Alex Reinecke
,
Michael Uddstrom
,
Michael J. Revell
,
Richard Turner
,
Bernd Kaifler
,
Johannes S. Wagner
,
Tyler Mixa
,
Christopher G. Kruse
,
Alison D. Nugent
,
Campbell D. Watson
,
Sonja Gisinger
,
Steven M. Smith
,
Ruth S. Lieberman
,
Brian Laughman
,
James J. Moore
,
William O. Brown
,
Julie A. Haggerty
,
Alison Rockwell
,
Gregory J. Stossmeister
,
Steven F. Williams
,
Gonzalo Hernandez
,
Damian J. Murphy
,
Andrew R. Klekociuk
,
Iain M. Reid
, and
Jun Ma

Abstract

The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was designed to quantify gravity wave (GW) dynamics and effects from orographic and other sources to regions of dissipation at high altitudes. The core DEEPWAVE field phase took place from May through July 2014 using a comprehensive suite of airborne and ground-based instruments providing measurements from Earth’s surface to ∼100 km. Austral winter was chosen to observe deep GW propagation to high altitudes. DEEPWAVE was based on South Island, New Zealand, to provide access to the New Zealand and Tasmanian “hotspots” of GW activity and additional GW sources over the Southern Ocean and Tasman Sea. To observe GWs up to ∼100 km, DEEPWAVE utilized three new instruments built specifically for the National Science Foundation (NSF)/National Center for Atmospheric Research (NCAR) Gulfstream V (GV): a Rayleigh lidar, a sodium resonance lidar, and an advanced mesosphere temperature mapper. These measurements were supplemented by in situ probes, dropsondes, and a microwave temperature profiler on the GV and by in situ probes and a Doppler lidar aboard the German DLR Falcon. Extensive ground-based instrumentation and radiosondes were deployed on South Island, Tasmania, and Southern Ocean islands. Deep orographic GWs were a primary target but multiple flights also observed deep GWs arising from deep convection, jet streams, and frontal systems. Highlights include the following: 1) strong orographic GW forcing accompanying strong cross-mountain flows, 2) strong high-altitude responses even when orographic forcing was weak, 3) large-scale GWs at high altitudes arising from jet stream sources, and 4) significant flight-level energy fluxes and often very large momentum fluxes at high altitudes.

Full access