Search Results

You are looking at 1 - 9 of 9 items for :

  • Author or Editor: James R. Campbell x
  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Simone Lolli
,
Ellsworth J. Welton
, and
James R. Campbell

Abstract

This paper investigates multiwavelength retrievals of median equivolumetric drop diameter D 0 suitable for drizzle and light rain, through collocated 355-/527-nm Micropulse Lidar Network (MPLNET) observations collected during precipitation occurring 9 May 2012 at the Goddard Space Flight Center (GSFC) project site. By applying a previously developed retrieval technique for infrared bands, the method exploits the differential backscatter by liquid water at 355 and 527 nm for water drops larger than ≈50 μm. In the absence of molecular and aerosol scattering and neglecting any transmission losses, the ratio of the backscattering profiles at the two wavelengths (355 and 527 nm), measured from light rain below the cloud melting layer, can be described as a color ratio, which is directly related to D 0. The uncertainty associated with this method is related to the unknown shape of the drop size spectrum and to the measurement error. Molecular and aerosol scattering contributions and relative transmission losses due to the various atmospheric constituents should be evaluated to derive D 0 from the observed color ratio profiles. This process is responsible for increasing the uncertainty in the retrieval. Multiple scattering, especially for UV lidar, is another source of error, but it exhibits lower overall uncertainty with respect to other identified error sources. It is found that the total error upper limit on D 0 approaches 50%. The impact of this retrieval for long-term MPLNET monitoring and its global data archive is discussed.

Full access
James R. Campbell
,
Kenneth Sassen
, and
Ellsworth J. Welton

Abstract

A threshold-based detection algorithm for cloud and aerosol layer heights in elevated micropulse lidar data (0.523 μm) is described. Thresholds for differentiating cloud and aerosol signals from that of the molecular atmosphere are based on the signal uncertainties of the level 1.0 Micropulse Lidar Network (MPLNET) data product. To illustrate the algorithm, data from 1 to 10 June 2003 collected by an MPLNET instrument at the South Pole are discussed for polar stratospheric cloud-height retrievals. Additional tests are run for algorithm sensitivity relative to variable solar background scenes. The algorithm is run at multiple temporal resolutions. Results derived at a base resolution are used to screen attenuation-limited profiles from longer time averages to improve performance. A signal normalization step using a theoretical molecular scattering profile limits the application of the technique in the lower atmosphere for a ground-based instrument. This would not be the case for some nadir-viewing lidars, and the application of the algorithm to airborne and satellite datasets is speculated.

Full access
Jasper R. Lewis
,
James R. Campbell
,
Ellsworth J. Welton
,
Sebastian A. Stewart
, and
Phillip C. Haftings

Abstract

The National Aeronautics and Space Administration Micro Pulse Lidar Network, version 3, cloud detection algorithm is described and differences relative to the previous version are highlighted. Clouds are identified from normalized level 1 signal profiles using two complementary methods. The first method considers vertical signal derivatives for detecting low-level clouds. The second method, which detects high-level clouds like cirrus, is based on signal uncertainties necessitated by the relatively low signal-to-noise ratio exhibited in the upper troposphere by eye-safe network instruments, especially during daytime. Furthermore, a multitemporal averaging scheme is used to improve cloud detection under conditions of a weak signal-to-noise ratio. Diurnal and seasonal cycles of cloud occurrence frequency based on one year of measurements at the Goddard Space Flight Center (Greenbelt, Maryland) site are compared for the new and previous versions. The largest differences, and perceived improvement, in detection occurs for high clouds (above 5 km, above MSL), which increase in occurrence by over 5%. There is also an increase in the detection of multilayered cloud profiles from 9% to 19%. Macrophysical properties and estimates of cloud optical depth are presented for a transparent cirrus dataset. However, the limit to which the cirrus cloud optical depth could be reliably estimated occurs between 0.5 and 0.8. A comparison using collocated CALIPSO measurements at the Goddard Space Flight Center and Singapore Micro Pulse Lidar Network (MPLNET) sites indicates improvements in cloud occurrence frequencies and layer heights.

Full access
Jared W. Marquis
,
Alec S. Bogdanoff
,
James R. Campbell
,
James A. Cummings
,
Douglas L. Westphal
,
Nathaniel J. Smith
, and
Jianglong Zhang

Abstract

Passive longwave infrared radiometric satellite–based retrievals of sea surface temperature (SST) at instrument nadir are investigated for cold bias caused by unscreened optically thin cirrus (OTC) clouds [cloud optical depth (COD) ≤ 0.3]. Level 2 nonlinear SST (NLSST) retrievals over tropical oceans (30°S–30°N) from Moderate Resolution Imaging Spectroradiometer (MODIS) radiances collected aboard the NASA Aqua satellite (Aqua-MODIS) are collocated with cloud profiles from the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument. OTC clouds are present in approximately 25% of tropical quality-assured (QA) Aqua-MODIS Level 2 data, representing over 99% of all contaminating cirrus found. Cold-biased NLSST (MODIS, AVHRR, and VIIRS) and triple-window (AVHRR and VIIRS only) SST retrievals are modeled based on operational algorithms using radiative transfer model simulations conducted with a hypothetical 1.5-km-thick OTC cloud placed incrementally from 10.0 to 18.0 km above mean sea level for cloud optical depths between 0.0 and 0.3. Corresponding cold bias estimates for each sensor are estimated using relative Aqua-MODIS cloud contamination frequencies as a function of cloud-top height and COD (assuming they are consistent across each platform) integrated within each corresponding modeled cold bias matrix. NLSST relative OTC cold biases, for any single observation, range from 0.33° to 0.55°C for the three sensors, with an absolute (bulk mean) bias between 0.09° and 0.14°C. Triple-window retrievals are more resilient, ranging from 0.08° to 0.14°C relative and from 0.02° to 0.04°C absolute. Cold biases are constant across the Pacific and Indian Oceans. Absolute bias is lower over the Atlantic but relative bias is higher, indicating that this issue persists globally.

Full access
Jared W. Marquis
,
Erica K. Dolinar
,
Anne Garnier
,
James R. Campbell
,
Benjamin C. Ruston
,
Ping Yang
, and
Jianglong Zhang

Abstract

The assimilation of hyperspectral infrared sounders (HIS) observations aboard Earth-observing satellites has become vital to numerical weather prediction, yet this assimilation is predicated on the assumption of clear-sky observations. Using collocated assimilated observations from the Atmospheric Infrared Sounder (AIRS) and the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP), it is found that nearly 7.7% of HIS observations assimilated by the Naval Research Laboratory Variational Data Assimilation System–Accelerated Representer (NAVDAS-AR) are contaminated by cirrus clouds. These contaminating clouds primarily exhibit visible cloud optical depths at 532 nm (COD532nm) below 0.10 and cloud-top temperatures between 240 and 185 K as expected for cirrus clouds. These contamination statistics are consistent with simulations from the Radiative Transfer for TOVS (RTTOV) model showing a cirrus cloud with a COD532nm of 0.10 imparts brightness temperature differences below typical innovation thresholds used by NAVDAS-AR. Using a one-dimensional variational (1DVar) assimilation system coupled with RTTOV for forward and gradient radiative transfer, the analysis temperature and moisture impact of assimilating cirrus-contaminated HIS observations is estimated. Large differences of 2.5 K in temperature and 11 K in dewpoint are possible for a cloud with COD532nm of 0.10 and cloud-top temperature of 210 K. When normalized by the contamination statistics, global differences of nearly 0.11 K in temperature and 0.34 K in dewpoint are possible, with temperature and dewpoint tropospheric root-mean-squared errors (RMSDs) as large as 0.06 and 0.11 K, respectively. While in isolation these global estimates are not particularly concerning, differences are likely much larger in regions with high cirrus frequency.

Open access
James R. Campbell
,
Dennis L. Hlavka
,
Ellsworth J. Welton
,
Connor J. Flynn
,
David D. Turner
,
James D. Spinhirne
,
V. Stanley Scott III
, and
I. H. Hwang

Abstract

Atmospheric radiative forcing, surface radiation budget, and top-of-the-atmosphere radiance interpretation involve knowledge of the vertical height structure of overlying cloud and aerosol layers. During the last decade, the U.S. Department of Energy, through the Atmospheric Radiation Measurement (ARM) program, has constructed four long-term atmospheric observing sites in strategic climate regimes (north-central Oklahoma; Barrow, Alaska; and Nauru and Manus Islands in the tropical western Pacific). Micropulse lidar (MPL) systems provide continuous, autonomous observation of nearly all significant atmospheric clouds and aerosols at each of the central ARM facilities. These systems are compact, and transmitted pulses are eye safe. Eye safety is achieved by expanding relatively low-powered outgoing pulse energy through a shared, coaxial transmit/receive telescope. ARM MPL system specifications and specific unit optical designs are discussed. Data normalization and calibration techniques are presented. These techniques, in tandem, represent an operational value-added processing package used to produce normalized data products for ARM cloud and aerosol research.

Full access
Jared W. Marquis
,
Mayra I. Oyola
,
James R. Campbell
,
Benjamin C. Ruston
,
Carmen Córdoba-Jabonero
,
Emilio Cuevas
,
Jasper R. Lewis
,
Travis D. Toth
, and
Jianglong Zhang

Abstract

Numerical weather prediction systems depend on Hyperspectral Infrared Sounder (HIS) data, yet the impacts of dust-contaminated HIS radiances on weather forecasts has not been quantified. To determine the impact of dust aerosol on HIS radiance assimilation, we use a modified radiance assimilation system employing a one-dimensional variational assimilation system (1DVAR) developed under the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Numerical Weather Prediction–Satellite Application Facility (NWP-SAF) project, which uses the Radiative Transfer for TOVS (RTTOV). Dust aerosol impacts on analyzed temperature and moisture fields are quantified using synthetic HIS observations from rawinsonde, Micropulse Lidar Network (MPLNET), and Aerosol Robotic Network (AERONET). Specifically, a unit dust aerosol optical depth (AOD) contamination at 550 nm can introduce larger than 2.4 and 8.6 K peak biases in analyzed temperature and dewpoint, respectively, over our test domain. We hypothesize that aerosol observations, or even possibly forecasts from aerosol predication models, may be used operationally to mitigate dust induced temperature and moisture analysis biases through forward radiative transfer modeling.

Open access
Theodore M. McHardy
,
James R. Campbell
,
David A. Peterson
,
Simone Lolli
,
Anne Garnier
,
Arunas P. Kuciauskas
,
Melinda L. Surratt
,
Jared W. Marquis
,
Steven D. Miller
,
Erica K. Dolinar
, and
Xiquan Dong

Abstract

This study develops a new thin cirrus detection algorithm applicable to overland scenes. The methodology builds from a previously developed overwater algorithm, which makes use of the Geostationary Operational Environmental Satellite 16 (GOES-16) Advanced Baseline Imager (ABI) channel 4 radiance (1.378-μm “cirrus” band). Calibration of this algorithm is based on coincident Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) cloud profiles. Emphasis is placed on rejection of false detections that are more common in overland scenes. Clear-sky false alarm rates over land are examined as a function of precipitable water vapor (PWV), showing that nearly all pixels having a PWV of <0.4 cm produce false alarms. Enforcing an above-cloud PWV minimum threshold of ∼1 cm ensures that most low-/midlevel clouds are not misclassified as cirrus by the algorithm. Pixel-filtering based on the total column PWV and the PWV for a layer between the top of the atmosphere (TOA) and a predetermined altitude H removes significant land surface and low-/midlevel cloud false alarms from the overall sample while preserving over 80% of valid cirrus pixels. Additionally, the use of an aggressive PWV layer threshold preferentially removes noncirrus pixels such that the remaining sample is composed of nearly 70% cirrus pixels, at the cost of a much-reduced overall sample size. This study shows that lower-tropospheric clouds are a much more significant source of uncertainty in cirrus detection than the land surface.

Free access
Theodore M. McHardy
,
James R. Campbell
,
David A. Peterson
,
Simone Lolli
,
Richard L. Bankert
,
Anne Garnier
,
Arunas P. Kuciauskas
,
Melinda L. Surratt
,
Jared W. Marquis
,
Steven D. Miller
,
Erica K. Dolinar
, and
Xiquan Dong

Abstract

We describe a quantitative evaluation of maritime transparent cirrus cloud detection, which is based on Geostationary Operational Environmental Satellite 16 (GOES-16) and developed with collocated Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) profiling. The detection algorithm is developed using one month of collocated GOES-16 Advanced Baseline Imager (ABI) channel-4 (1.378 μm) radiance and CALIOP 0.532-μm column-integrated cloud optical depth (COD). First, the relationships between the clear-sky 1.378-μm radiance, viewing/solar geometry, and precipitable water vapor (PWV) are characterized. Using machine-learning techniques, it is shown that the total atmospheric pathlength, proxied by airmass factor (AMF), is a suitable replacement for viewing zenith and solar zenith angles alone, and that PWV is not a significant problem over ocean. Detection thresholds are computed using the channel-4 radiance as a function of AMF. The algorithm detects nearly 50% of subvisual cirrus (COD < 0.03), 80% of transparent cirrus (0.03 < COD < 0.3), and 90% of opaque cirrus (COD > 0.3). Using a conservative radiance threshold results in 84% of cloudy pixels being correctly identified and 4% of clear-sky pixels being misidentified as cirrus. A semiquantitative COD retrieval is developed for GOES ABI based on the observed relationship between CALIOP COD and 1.378-μm radiance. This study lays the groundwork for a more complex, operational GOES transparent cirrus detection algorithm. Future expansion includes an overland algorithm, a more robust COD retrieval that is suitable for assimilation purposes, and downstream GOES products such as cirrus cloud microphysical property retrieval based on ABI infrared channels.

Full access