Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: James R. Campbell x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
David A. Peterson
,
Edward J. Hyer
,
James R. Campbell
,
Michael D. Fromm
,
Johnathan W. Hair
,
Carolyn F. Butler
, and
Marta A. Fenn

Abstract

The 2013 Rim Fire, which burned over 104,000 ha, was one of the most severe fire events in California’s history, in terms of its rapid growth, intensity, overall size, and persistent smoke plume. At least two large pyrocumulonimbus (pyroCb) events were observed, allowing smoke particles to extend through the upper troposphere over a large portion of the Pacific Northwest. However, the most extreme fire spread was observed on days without pyroCb activity or significant regional convection. A diverse archive of ground, airborne, and satellite data collected during the Rim Fire provides a unique opportunity to examine the conditions required for both extreme spread events and pyroCb development. Results highlight the importance of upper-level and nocturnal meteorology, as well as the limitations of traditional fire weather indices. The Rim Fire dataset also allows for a detailed examination of conflicting hypotheses surrounding the primary source of moisture during pyroCb development. All pyroCbs were associated with conditions very similar to those that produce dry thunderstorms. The current suite of automated forecasting applications predict only general trends in fire behavior, and specifically do not predict 1) extreme fire spread events and 2) injection of smoke to high altitudes. While these two exceptions are related, analysis of the Rim Fire shows that they are not predicted by the same set of conditions and variables. The combination of numerical weather prediction data and satellite observations exhibits great potential for improving automated regional-scale forecasts of fire behavior and smoke emissions.

Full access
David C. Fritts
,
Ronald B. Smith
,
Michael J. Taylor
,
James D. Doyle
,
Stephen D. Eckermann
,
Andreas Dörnbrack
,
Markus Rapp
,
Bifford P. Williams
,
P.-Dominique Pautet
,
Katrina Bossert
,
Neal R. Criddle
,
Carolyn A. Reynolds
,
P. Alex Reinecke
,
Michael Uddstrom
,
Michael J. Revell
,
Richard Turner
,
Bernd Kaifler
,
Johannes S. Wagner
,
Tyler Mixa
,
Christopher G. Kruse
,
Alison D. Nugent
,
Campbell D. Watson
,
Sonja Gisinger
,
Steven M. Smith
,
Ruth S. Lieberman
,
Brian Laughman
,
James J. Moore
,
William O. Brown
,
Julie A. Haggerty
,
Alison Rockwell
,
Gregory J. Stossmeister
,
Steven F. Williams
,
Gonzalo Hernandez
,
Damian J. Murphy
,
Andrew R. Klekociuk
,
Iain M. Reid
, and
Jun Ma

Abstract

The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was designed to quantify gravity wave (GW) dynamics and effects from orographic and other sources to regions of dissipation at high altitudes. The core DEEPWAVE field phase took place from May through July 2014 using a comprehensive suite of airborne and ground-based instruments providing measurements from Earth’s surface to ∼100 km. Austral winter was chosen to observe deep GW propagation to high altitudes. DEEPWAVE was based on South Island, New Zealand, to provide access to the New Zealand and Tasmanian “hotspots” of GW activity and additional GW sources over the Southern Ocean and Tasman Sea. To observe GWs up to ∼100 km, DEEPWAVE utilized three new instruments built specifically for the National Science Foundation (NSF)/National Center for Atmospheric Research (NCAR) Gulfstream V (GV): a Rayleigh lidar, a sodium resonance lidar, and an advanced mesosphere temperature mapper. These measurements were supplemented by in situ probes, dropsondes, and a microwave temperature profiler on the GV and by in situ probes and a Doppler lidar aboard the German DLR Falcon. Extensive ground-based instrumentation and radiosondes were deployed on South Island, Tasmania, and Southern Ocean islands. Deep orographic GWs were a primary target but multiple flights also observed deep GWs arising from deep convection, jet streams, and frontal systems. Highlights include the following: 1) strong orographic GW forcing accompanying strong cross-mountain flows, 2) strong high-altitude responses even when orographic forcing was weak, 3) large-scale GWs at high altitudes arising from jet stream sources, and 4) significant flight-level energy fluxes and often very large momentum fluxes at high altitudes.

Full access