Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Jean-Pierre Chaboureau x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Jean-Pierre Chaboureau
,
Nathalie Söhne
,
Jean-Pierre Pinty
,
Ingo Meirold-Mautner
,
Eric Defer
,
Catherine Prigent
,
Juan R. Pardo
,
Mario Mech
, and
Susanne Crewell

Abstract

The simulations of five midlatitude precipitating events by the nonhydrostatic mesoscale model Méso-NH are analyzed. These cases cover contrasted precipitation situations from 30° to 60°N, which are typical of midlatitudes. They include a frontal case with light precipitation over the Rhine River area (10 February 2000), a long-lasting precipitation event at Hoek van Holland, Netherlands (19 September 2001), a moderate rain case over the Elbe (12 August 2002), an intense rain case over Algiers (10 November 2001), and the “millennium storm” in the United Kingdom (30 October 2000). The physically consistent hydrometeor and thermodynamic outputs are used to generate a database for cloud and precipitation retrievals. The hydrometeor vertical profiles that were generated vary mostly with the 0°C isotherm, located between 1 and 3 km in height depending on the case. The characteristics of this midlatitude database are complementary to the GPROF database, which mostly concentrates on tropical situations. The realism of the simulations is evaluated against satellite observations by comparing synthetic brightness temperatures (BTs) with Advanced Microwave Sounding Unit (AMSU), Special Sensor Microwave Imager (SSM/I), and Meteosat observations. The good reproduction of the BT distributions by the model is exploited by calculating categorical scores for verification purposes. The comparison with 3-hourly Meteosat observations demonstrates the ability of the model to forecast the time evolution of the cloud cover, the latter being better predicted for the stratiform cases than for others. The comparison with AMSU-B measurements shows the skill of the model to predict rainfall at the correct location.

Full access