Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Jennifer Wei x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Feng Ding
,
Andrey Savtchenko
,
Thomas Hearty
,
Jennifer Wei
,
Michael Theobald
,
Bruce Vollmer
,
Baijun Tian
, and
Eric Fetzer

Abstract

The Atmospheric Infrared Sounder (AIRS) on board NASA’s Aqua satellite provides more than 16 years of data. Its monthly gridded (Level 3) product has been widely used for climate research and applications. Since counts of successful soundings in a grid cell are used to derive monthly averages, this averaged by observations (ABO) approach effectively gives equal importance to all participating soundings within a month. It is conceivable then that days with more observations due to day-to-day orbit shift and regimes with better retrieval skills will contribute disproportionately to the monthly average within a cell. Alternatively, the AIRS Level 3 monthly product can be produced through an averaged by days (ABD) approach, where the monthly mean in a grid cell is a simple average of the daily means. The effects of these averaging methods on the AIRS version 6 monthly product are assessed quantitatively using temperature and water vapor at the surface and 500 hPa. The ABO method results in a warmer (slightly colder) global mean temperature at the surface (500 hPa) and a drier global mean water vapor than ABD method. The AIRS multiyear monthly mean temperature and water vapor from both methods are also compared with the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) product and evaluated with a simulation experiment, indicating the ABD method has lower error and is more closely correlated with MERRA-2. In summary, the ABD method is recommended for future versions of the AIRS Level 3 monthly product and more data services supporting Level 3 aggregation are needed.

Free access
Jennifer C. Wei
,
Laura L. Pan
,
Eric Maddy
,
Jasna V. Pittman
,
Murty Divarkarla
,
Xiaozhen Xiong
, and
Chris Barnet

Abstract

Motivated by a significant potential for retrieving atmospheric ozone profile information from advanced satellite infrared sounders, this study investigates various methods to optimize ozone retrievals. A set of retrieval experiments has been performed to assess the impact of different background states (or the a priori states) and retrieval algorithms on the retrieved ozone profiles in the upper troposphere and lower stratosphere (UTLS) using Atmospheric Infrared Sounder (AIRS) measurements. A new tropopause-based ozone climatology, using publicly available global ozonesonde data to construct the a priori state, is described. Comparisons are made with the AIRS version 5 (v5) ozone climatology. The authors also present the result of a newly implemented optimal estimation (OE) algorithm and compare it to the current AIRS science team (AST) algorithm used in version 5. The ozone climatology using tropopause-referenced coordinates better preserves the shape and the magnitude of the ozone gradient across the tropopause, especially in the extratropical region. The results of the retrieval experiments indicate that the tropopause-referenced climatology not only helps to optimize the use of instrument sensitivity in the UTLS region, but it also provides better constraints to the OE algorithm.

Full access
Xiaoyan Wei
,
Henk M. Schuttelaars
,
Megan E. Williams
,
Jennifer M. Brown
,
Peter D. Thorne
, and
Laurent O. Amoudry

Abstract

Asymmetric tidal turbulence (ATT) strongly influences estuarine health and functioning. However, its impact on the three-dimensional estuarine dynamics and the feedback of water motion and salinity distribution on ATT remain poorly understood, especially for short estuaries (estuarine length ≪ tidal wavelength). This study systematically investigates the abovementioned interactions in a short estuary for the first time, considering periodically weakly stratified conditions. This is done by developing a three-dimensional semi-analytical model (combining perturbation method with finite element method) that allows a dissection of the contributions of different processes to ATT, estuarine circulation, and salt transport. The generation of ATT is dominated by (i) strain-induced periodic stratification and (ii) asymmetric bottom-shear-generated turbulence, and their contributions to ATT are different both in amplitude and phase. The magnitude of the residual circulation related to ATT and the eddy viscosity–shear covariance (ESCO) is about half of that of the gravitational circulation (GC) and shows a “reversed” pattern as compared to GC. ATT generated by strain-induced periodic stratification contributes to an ESCO circulation with a spatial structure similar to GC. This circulation reduces the longitudinal salinity gradients and thus weakens GC. Contrastingly, the ESCO circulation due to asymmetric bottom-shear-generated turbulence shows patterns opposite to GC and acts to enhance GC. Concerning the salinity dynamics at steady state, GC and tidal pumping are equally important to salt import, whereas ESCO circulation yields a significant seaward salt transport. These findings highlight the importance of identifying the sources of ATT to understand its impact on estuarine circulation and salt distribution.

Open access
Matthew H. Alford
,
Jennifer A. MacKinnon
,
Jonathan D. Nash
,
Harper Simmons
,
Andy Pickering
,
Jody M. Klymak
,
Robert Pinkel
,
Oliver Sun
,
Luc Rainville
,
Ruth Musgrave
,
Tamara Beitzel
,
Ke-Hsien Fu
, and
Chung-Wei Lu

Abstract

Internal tide generation, propagation, and dissipation are investigated in Luzon Strait, a system of two quasi-parallel ridges situated between Taiwan and the Philippines. Two profiling moorings deployed for about 20 days and a set of nineteen 36-h lowered ADCP–CTD time series stations allowed separate measurement of diurnal and semidiurnal internal tide signals. Measurements were concentrated on a northern line, where the ridge spacing was approximately equal to the mode-1 wavelength for semidiurnal motions, and a southern line, where the spacing was approximately two-thirds that. The authors contrast the two sites to emphasize the potential importance of resonance between generation sites. Throughout Luzon Strait, baroclinic energy, energy fluxes, and turbulent dissipation were some of the strongest ever measured. Peak-to-peak baroclinic velocity and vertical displacements often exceeded 2 m s−1 and 300 m, respectively. Energy fluxes exceeding 60 kW m−1 were measured at spring tide at the western end of the southern line. On the northern line, where the western ridge generates appreciable eastward-moving signals, net energy flux between the ridges was much smaller, exhibiting a nearly standing wave pattern. Overturns tens to hundreds of meters high were observed at almost all stations. Associated dissipation was elevated in the bottom 500–1000 m but was strongest by far atop the western ridge on the northern line, where >500-m overturns resulted in dissipation exceeding 2 × 10−6 W kg−1 (implying diapycnal diffusivity Kρ > 0.2 m2 s−1). Integrated dissipation at this location is comparable to conversion and flux divergence terms in the energy budget. The authors speculate that resonance between the two ridges may partly explain the energetic motions and heightened dissipation.

Full access
Nicholas R. Nalli
,
Everette Joseph
,
Vernon R. Morris
,
Christopher D. Barnet
,
Walter W. Wolf
,
Daniel Wolfe
,
Peter J. Minnett
,
Malgorzata Szczodrak
,
Miguel A. Izaguirre
,
Rick Lumpkin
,
Hua Xie
,
Alexander Smirnov
,
Thomas S. King
, and
Jennifer Wei

This paper gives an overview of a unique set of ship-based atmospheric data acquired over the tropical Atlantic Ocean during boreal spring and summer as part of ongoing National Oceanic and Atmospheric Administration (NOAA) Aerosols and Ocean Science Expedition (AEROSE) field campaigns. Following the original 2004 campaign onboard the Ronald H. Brown, AEROSE has operated on a yearly basis since 2006 in collaboration with the NOAA Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) Northeast Extension (PNE). In this work, attention is given to atmospheric soundings of ozone, temperature, water vapor, pressure, and wind obtained from ozonesondes and radiosondes launched to coincide with low earth orbit environmental satellite overpasses [MetOp and the National Aeronautics and Space Administration (NASA) A-Train]. Data from the PNE/ AEROSE campaigns are unique in their range of marine meteorological phenomena germane to the satellite missions in question, including dust and smoke outflows from Africa, the Saharan air layer (SAL), and the distribution of tropical water vapor and tropical Atlantic ozone. The multiyear PNE/AEROSE sounding data are valuable as correlative data for prelaunch phase validation of the planned Joint Polar Satellite System (JPSS) and NOAA Geosynchronous Operational Environmental Satellite R series (GOES-R) systems, as well as numerous other science applications. A brief summary of these data, along with an overview of some important science highlights, including meteorological phenomena of general interest, is presented.

Full access
Xin-Zhong Liang
,
Drew Gower
,
Jennifer A. Kennedy
,
Melissa Kenney
,
Michael C. Maddox
,
Michael Gerst
,
Guillermo Balboa
,
Talon Becker
,
Ximing Cai
,
Roger Elmore
,
Wei Gao
,
Yufeng He
,
Kang Liang
,
Shane Lotton
,
Leena Malayil
,
Megan L. Matthews
,
Alison M. Meadow
,
Christopher M. U. Neale
,
Greg Newman
,
Amy Rebecca Sapkota
,
Sanghoon Shin
,
Jonathan Straube
,
Chao Sun
,
You Wu
,
Yun Yang
, and
Xuesong Zhang

Abstract

Climate change presents huge challenges to the already-complex decisions faced by U.S. agricultural producers, as seasonal weather patterns increasingly deviate from historical tendencies. Under USDA funding, a transdisciplinary team of researchers, extension experts, educators, and stakeholders is developing a climate decision support Dashboard for Agricultural Water use and Nutrient management (DAWN) to provide Corn Belt farmers with better predictive information. DAWN’s goal is to provide credible, usable information to support decisions by creating infrastructure to make subseasonal-to-seasonal forecasts accessible. DAWN uses an integrated approach to 1) engage stakeholders to coproduce a decision support and information delivery system; 2) build a coupled modeling system to represent and transfer holistic systems knowledge into effective tools; 3) produce reliable forecasts to help stakeholders optimize crop productivity and environmental quality; and 4) integrate research and extension into experiential, transdisciplinary education. This article presents DAWN’s framework for integrating climate–agriculture research, extension, and education to bridge science and service. We also present key challenges to the creation and delivery of decision support, specifically in infrastructure development, coproduction and trust building with stakeholders, product design, effective communication, and moving tools toward use.

Open access