Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Jingyu Wang x
  • Journal of Climate x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Fengfei Song, Zhe Feng, L. Ruby Leung, Robert A. Houze Jr, Jingyu Wang, Joseph Hardin, and Cameron R. Homeyer


Mesoscale convective systems (MCSs) are frequently observed over the U.S. Great Plains during boreal spring and summer. Here, four types of synoptically favorable environments for spring MCSs and two types each of synoptically favorable and unfavorable environments for summer MCSs are identified using self-organizing maps (SOMs) with inputs from observational data. During spring, frontal systems providing a lifting mechanism and an enhanced Great Plains low-level jet (GPLLJ) providing anomalous moisture are important features identified by SOM analysis for creating favorable dynamical and thermodynamic environments for MCS development. During summer, the composite MCS environment shows small positive convective available potential energy (CAPE) and convective inhibition (CIN) anomalies, which are in stark contrast with the large positive CAPE and negative CIN anomalies in spring. This contrast suggests that summer convection may occur even with weak large-scale dynamical and thermodynamic perturbations so MCSs may be inherently less predictable in summer. The two synoptically favorable environments identified in summer have frontal characteristics and an enhanced GPLLJ, but both shift north compared to spring. The two synoptically unfavorable environments feature enhanced upper-level ridges, but differ in the strength of the GPLLJ. In both seasons, MCS precipitation amount, area, and rate are much larger in the frontal-related MCSs than in nonfrontal MCSs. A large-scale index constructed using pattern correlation between large-scale environments and the synoptically favorable SOM types is found to be skillful for estimating MCS number, precipitation rate, and area in spring, but its explanatory power decreases significantly in summer. The low predictability of summer MCSs deserves further investigation in the future.

Full access
Zhe Feng, Robert A. Houze Jr., L. Ruby Leung, Fengfei Song, Joseph C. Hardin, Jingyu Wang, William I. Gustafson Jr., and Cameron R. Homeyer


The spatiotemporal variability and three-dimensional structures of mesoscale convective systems (MCSs) east of the U.S. Rocky Mountains and their large-scale environments are characterized across all seasons using 13 years of high-resolution radar and satellite observations. Long-lived and intense MCSs account for over 50% of warm season precipitation in the Great Plains and over 40% of cold season precipitation in the southeast. The Great Plains has the strongest MCS seasonal cycle peaking in May–June, whereas in the U.S. southeast MCSs occur year-round. Distinctly different large-scale environments across the seasons have significant impacts on the structure of MCSs. Spring and fall MCSs commonly initiate under strong baroclinic forcing and favorable thermodynamic environments. MCS genesis frequently occurs in the Great Plains near sunset, although convection is not always surface based. Spring MCSs feature both large and deep convection, with a large stratiform rain area and high volume of rainfall. In contrast, summer MCSs often initiate under weak baroclinic forcing, featuring a high pressure ridge with weak low-level convergence acting on the warm, humid air associated with the low-level jet. MCS genesis concentrates east of the Rocky Mountain Front Range and near the southeast coast in the afternoon. The strongest MCS diurnal cycle amplitude extends from the foothills of the Rocky Mountains to the Great Plains. Summer MCSs have the largest and deepest convective features, the smallest stratiform rain area, and the lowest rainfall volume. Last, winter MCSs are characterized by the strongest baroclinic forcing and the largest MCS precipitation features over the southeast. Implications of the findings for climate modeling are discussed.

Open access