Search Results

You are looking at 1 - 9 of 9 items for :

  • Author or Editor: John F. Scinocca x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
John F. Scinocca

Abstract

An accurate method of solution is developed for the Warner and McIntyre parameterization of nonorographic gravity wave drag for the case of hydrostatic dynamics in the absence of rotation. The new scheme is sufficiently fast that it is suitable for operational use in a general circulation model. Multiyear climate runs of the Canadian Middle Atmosphere Model are performed using the new scheme, and these are compared against equivalent climate runs using the full Warner and McIntyre scheme, which includes nonhydrostatic and rotational wave dynamics. The results indicate that the new operational scheme closely reproduces the seasonal distribution of time- and zonal-mean zonal winds, and the seasonal evolution of lower stratospheric temperatures that are obtained when the full Warner and McIntyre scheme is used. In addition, these quantities are shown to compare favorably with observations.

Full access
Charles McLandress and John F. Scinocca

Abstract

A comparison is undertaken of the response of a general circulation model (GCM) to the nonorographic gravity wave drag parameterizations of Hines, Warner and McIntyre, and Alexander and Dunkerton. The analysis is restricted to a comparison of each parameterization’s nonlinear dissipation mechanism since, in principle, this is the only component that differs between the schemes. This is achieved by developing a new, more general parameterization that can represent each of these dissipation mechanisms, while keeping all other aspects of the problem identical.

The GCM simulations reveal differences in the climatological response to the three dissipation mechanisms. These differences are documented for both tropopause and surface launch elevations of the parameterized waves. The simulations also reveal systematic differences in the height at which momentum is deposited. This behavior is investigated further in a set of experiments designed to reduce these systematic differences, while leaving the details of the dissipation mechanisms unaltered. These sensitivity experiments demonstrate that it is possible to obtain nearly identical responses from all three mechanisms, which indicates that the GCM response is largely insensitive to the precise details of the dissipation mechanisms. This finding is supported by an additional experiment in which the nonlinear dissipation mechanisms are turned off and critical-level filtering is left to act as the only source of dissipation. In this experiment, critical-level filtering effectively replaces the nonlinear dissipation mechanism, producing a nearly identical response.

The results of this study suggest that climate modeling efforts would potentially benefit more from the refinement of other aspects of the parameterization problem, such as the properties of the launch spectrum, than they have benefited from the refinement of dissipation mechanisms.

Full access
John F. Scinocca and Norman A. McFarlane

Abstract

This paper investigates the temporal properties of tropical precipitation in the Canadian Centre for Climate Modelling and Analysis (CCCma) third-generation atmospheric general circulation model (AGCM3). AGCM3 employs the penetrative mass-flux (PMF) scheme of Zhang and McFarlane (ZM) for the parameterization of deep cumulus convection. It is found that the temporal variability of the ZM scheme is sensitive to a number of its internal parameters as well to the use of a prognostic, rather than diagnostic, closure condition for the cloud-base mass flux. Sensitivity experiments suggest that the ZM scheme can produce realistic amounts of variability when compared to direct radar observations of deep cumulus convection in the Tropics.

A central finding of this study is that the resolved large-scale stratiform precipitation (LSP) in the model can participate in the modeling of deep latent heating and so compete with the ZM scheme in the Tropics. In modeling deep latent heating the LSP is found to mimic the behavior of a moist-convective adjustment scheme. In AGCM3 it is found that typical parameter settings of the ZM scheme place it in a regime in which the temporal variability of tropical precipitation is dominated by this behavior of the LSP, while the temporal mean is dominated by the ZM scheme. In such circumstances it is the LSP, and not the ZM scheme, that provides the primary source of resolved tropical Kelvin and mixed Rossby–gravity waves in the GCM. Such competition between LSP and the parameterization of deep convection appears to be active in other modeling studies. Consequently, it has the potential to complicate efforts to understand the nature of resolved tropical waves in GCMs and their role in the forcing of the quasi-biennial and semiannual oscillations.

Full access
John F. Scinocca and Bruce R. Sutherland

Abstract

A new effect related to the evaluation of momentum deposition in conventional parameterizations of orographic gravity wave drag (GWD) is considered. The effect takes the form of an adjustment to the basic-state wind about which steady-state wave solutions are constructed. The adjustment is conservative and follows from wave–mean flow theory associated with wave transience at the leading edge of the wave train, which sets up the steady solution assumed in such parameterizations. This has been referred to as “self-acceleration” and it is shown to induce a systematic lowering of the elevation of momentum deposition, which depends quadratically on the amplitude of the wave. An expression for the leading-order impact of self-acceleration is derived in terms of a reduction of the critical inverse Froude number Fc, which determines the onset of wave breaking for upwardly propagating waves in orographic GWD schemes. In such schemes Fc is a central tuning parameter and typical values are generally smaller than anticipated from conventional wave theory. Here it is suggested that self-acceleration may provide some of the explanation for why such small values of Fc are required. The impact of Fc on present-day climate is illustrated by simulations of the Canadian Middle Atmosphere Model.

Full access
Oliver Bühler, Michael E. McIntyre, and John F. Scinocca

Abstract

A long unresolved issue in nonorographic gravity wave generation is whether there is significant emission from Kelvin–Helmholtz (KH) shear instability in the lower stratosphere, for instance, just above tropopause jets. Such emission has often been suggested as significant for the angular momentum budget and hence for the wave-driven circulation of the middle atmosphere, most crucially in the summer mesosphere. An idealized model thought experiment is studied in which it is assumed that the KH shear instability rapidly mixes a thin layer, producing a “pancake” of three-dimensional clear-air turbulence, and emitting low-frequency inertia–gravity waves whose aspect ratio matches that of the turbulent layer and whose horizontal wavelength is large enough to avoid back-reflection and hence reach the summer mesosphere. The wave emission is modeled as a linear initial-value problem in which the rapid mixing of mass and momentum achieved by the turbulence is treated as instantaneous, and hence as determining the initial conditions. Care is taken to cast the problem into a form that permits well-conditioned numerical evaluation of the analytical solution, in both rotating and nonrotating cases, which behave very differently. Comparison with fully nonlinear numerical simulations in two dimensions of the same initial-value problem indicates that the linear theory is much better than might be expected on order-of-magnitude grounds. A companion paper (Part II) investigates the transmission of the emitted waves to the mesosphere subject to refraction and radiative damping.

Full access
Annelize van Niekerk, John F. Scinocca, and Theodore G. Shepherd

Abstract

The parameterization of orographic drag processes in atmospheric models remains uncertain because of a lack of observational and theoretical constraints on their formulation and free parameters. While previous studies have demonstrated that parameterized orographic drag acting near the surface has a significant impact on the atmospheric circulation, this work follows a more systematic approach to investigate its impacts on the large-scale circulation and the circulation response to climate change. A set of experiments with a comprehensive atmospheric general circulation model is used to ascertain the range of climatological circulations that may arise from parameter uncertainty. It is found that the Northern Hemisphere (NH) wintertime stationary wave field is strongly damped over the North Pacific (NP) and amplified over the North Atlantic (NA) as a result of increased low-level parameterized orographic drag, both of which are shown to be conducive to higher-latitude westerlies. A comparison with the stationary wave field presented in other studies suggests that the too-zonal NA jet and equatorward NP jet biases that are prevalent in climate models may be at least partly due to their representation of orographic drag. The amplitude of the stationary wave response to climate change across the experiments is shown to scale with the magnitude of low-level parameterized orographic drag through its influence on the present-day climatological stationary wave amplitudes over different sectors of the NH, which is consistent with linear stationary wave theory. This work highlights the importance of fidelity in a model’s basic state for regional climate change projections.

Full access
James A. Anstey, John F. Scinocca, and Martin Keller

Abstract

The quasi-biennial oscillation (QBO) of tropical stratospheric zonal winds is simulated in an atmospheric general circulation model and its sensitivity to model parameters is explored. Vertical resolution in the lower tropical stratosphere finer than ≈1 km and sufficiently strong forcing by parameterized nonorographic gravity wave drag are both required for the model to exhibit a QBO-like oscillation. Coarser vertical resolution yields oscillations that are seasonally synchronized and driven mainly by gravity wave drag. As vertical resolution increases, wave forcing in the tropical lower stratosphere increases and seasonal synchronization is disrupted, allowing quasi-biennial periodicity to emerge. Seasonal synchronization could result from the form of wave dissipation assumed in the gravity wave parameterization, which allows downward influence by semiannual oscillation (SAO) winds, whereas dissipation of resolved waves is consistent with radiative damping and no downward influence. Parameterized wave drag is nevertheless required to generate a realistic QBO, effectively acting to amplify the relatively weaker mean-flow forcing by resolved waves.

Full access
James A. Anstey, Theodore G. Shepherd, and John F. Scinocca

Abstract

The interannual variability of the stratospheric polar vortex during winter in both hemispheres is observed to correlate strongly with the phase of the quasi-biennial oscillation (QBO) in tropical stratospheric winds. It follows that the lack of a spontaneously generated QBO in most atmospheric general circulation models (AGCMs) adversely affects the nature of polar variability in such models. This study examines QBO–vortex coupling in an AGCM in which a QBO is spontaneously induced by resolved and parameterized waves.

The QBO–vortex coupling in the AGCM compares favorably to that seen in reanalysis data [from the 40-yr ECMWF Re-Analysis (ERA-40)], provided that careful attention is given to the definition of QBO phase. A phase angle representation of the QBO is employed that is based on the two leading empirical orthogonal functions of equatorial zonal wind vertical profiles. This yields a QBO phase that serves as a proxy for the vertical structure of equatorial winds over the whole depth of the stratosphere and thus provides a means of subsampling the data to select QBO phases with similar vertical profiles of equatorial zonal wind. Using this subsampling, it is found that the QBO phase that induces the strongest polar vortex response in early winter differs from that which induces the strongest late-winter vortex response. This is true in both hemispheres and for both the AGCM and ERA-40.

It follows that the strength and timing of QBO influence on the vortex may be affected by the partial seasonal synchronization of QBO phase transitions that occurs both in observations and in the model. This provides a mechanism by which changes in the strength of QBO–vortex correlations may exhibit variability on decadal time scales. In the model, such behavior occurs in the absence of external forcings or interannual variations in sea surface temperatures.

Full access
Charles McLandress, John F. Scinocca, Theodore G. Shepherd, M. Catherine Reader, and Gloria L. Manney

Abstract

A version of the Canadian Middle Atmosphere Model (CMAM) that is nudged toward reanalysis data up to 1 hPa is used to examine the impacts of parameterized orographic and nonorographic gravity wave drag (OGWD and NGWD) on the zonal-mean circulation of the mesosphere during the extended northern winters of 2006 and 2009 when there were two large stratospheric sudden warmings. The simulations are compared to Aura Microwave Limb Sounder (MLS) observations of mesospheric temperature and carbon monoxide (CO) and derived zonal winds. The control simulation, which uses both OGWD and NGWD, is shown to be in good agreement with MLS. The impacts of OGWD and NGWD are assessed using simulations in which those sources of wave drag are removed. In the absence of OGWD the mesospheric zonal winds in the months preceding the warmings are too strong, causing increased mesospheric NGWD, which drives excessive downwelling, resulting in overly large lower-mesospheric values of CO prior to the warming. NGWD is found to be most important following the warmings when the underlying westerlies are too weak to allow much vertical propagation of the orographic gravity waves to the mesosphere. NGWD is primarily responsible for driving the circulation that results in the descent of CO from the thermosphere following the warmings. Zonal-mean mesospheric winds and temperatures in all simulations are shown to be strongly constrained by (i.e., slaved to) the stratosphere. Finally, it is demonstrated that the responses to OGWD and NGWD are nonadditive because of their dependence and influence on the background winds and temperatures.

Full access