Search Results
You are looking at 1 - 5 of 5 items for :
- Author or Editor: John H. Seinfeld x
- Journal of Applied Meteorology and Climatology x
- Refine by Access: Content accessible to me x
Abstract
This paper describes the results of an atmospheric tracer study in which sulfur hexafluoride (SF6) was used to investigate the transport and dispersion of effluent from a power plant located in a coastal environment. The field study demonstrated that material emitted into an elevated stable layer at night can be transported out over the ocean, fumigated to the surface, and then he returned at ground level by the sea breeze on the next day. At night when cool stable air from the land encounters the warmer ocean convective mixing erodes the stable layer forming an internal boundary layer. When the growing boundary layer encounters an elevated plume the pollutant material, entrained at the top of the mixed layer, can be rapidly transported in ∼20 min to the surface. Various expressions for the characteristic downmixing time (λ = Z i/w *) are developed utilizing the gradient Richardson number, the Monin-Obukhov length and turbulence intensifies. Calculations using these expressions and the field data are compared with similar studies of convective mixing over the land.
Abstract
This paper describes the results of an atmospheric tracer study in which sulfur hexafluoride (SF6) was used to investigate the transport and dispersion of effluent from a power plant located in a coastal environment. The field study demonstrated that material emitted into an elevated stable layer at night can be transported out over the ocean, fumigated to the surface, and then he returned at ground level by the sea breeze on the next day. At night when cool stable air from the land encounters the warmer ocean convective mixing erodes the stable layer forming an internal boundary layer. When the growing boundary layer encounters an elevated plume the pollutant material, entrained at the top of the mixed layer, can be rapidly transported in ∼20 min to the surface. Various expressions for the characteristic downmixing time (λ = Z i/w *) are developed utilizing the gradient Richardson number, the Monin-Obukhov length and turbulence intensifies. Calculations using these expressions and the field data are compared with similar studies of convective mixing over the land.
Abstract
In order to produce gridded fields of pollutant concentration data and surface wind data for use in an air quality model, a number of techniques for interpolating sparse data values are compared. The techniques are compared using three data sets. One is an idealized concentration distribution to which the exact solution is known, the second is a potential flow field, while the third consists of surface ozone concentrations measured in the Los Angeles Basin on a particular day. The results of the study indicate that fitting a second-degree polynomial to each subregion (triangle) in the plane with each data point weighted according to its distance from the subregion provides a good compromise between accuracy and computational cost.
Abstract
In order to produce gridded fields of pollutant concentration data and surface wind data for use in an air quality model, a number of techniques for interpolating sparse data values are compared. The techniques are compared using three data sets. One is an idealized concentration distribution to which the exact solution is known, the second is a potential flow field, while the third consists of surface ozone concentrations measured in the Los Angeles Basin on a particular day. The results of the study indicate that fitting a second-degree polynomial to each subregion (triangle) in the plane with each data point weighted according to its distance from the subregion provides a good compromise between accuracy and computational cost.
Abstract
An objective analysis procedure for generating mass-consistent, urban-scale three-dimensional wind fields is presented together with a comparison against existing techniques. The algorithm employs terrain following coordinates and variable vertical grid spacing. Initial estimates of the velocity field are developed by interpolating surface and upper level wind measurements. A local terrain adjustment technique, involving solution of the Poisson equation, is used to establish the horizontal components of the surface field. Vertical velocities are developed from successive solutions of the continuity equation followed by an iterative procedure which reduces anomalous divergence in the complete field. Major advantages of the procedure are that it is computationally efficient and allows boundary values to adjust in response to changes in the interior flow. The method has been successfully tested using field measurements and problems with known analytic solutions.
Abstract
An objective analysis procedure for generating mass-consistent, urban-scale three-dimensional wind fields is presented together with a comparison against existing techniques. The algorithm employs terrain following coordinates and variable vertical grid spacing. Initial estimates of the velocity field are developed by interpolating surface and upper level wind measurements. A local terrain adjustment technique, involving solution of the Poisson equation, is used to establish the horizontal components of the surface field. Vertical velocities are developed from successive solutions of the continuity equation followed by an iterative procedure which reduces anomalous divergence in the complete field. Major advantages of the procedure are that it is computationally efficient and allows boundary values to adjust in response to changes in the interior flow. The method has been successfully tested using field measurements and problems with known analytic solutions.
Abstract
No abstract available.
Abstract
No abstract available.
Abstract
Significant enhancements in humidity around cumulus clouds, that is, the “cloud halos” observed in many aircraft penetrations, are simulated using a three-dimensional dynamic model. Five case studies show that humidity halos occur mainly near lateral cloud boundaries and also occur at cloud top and base when the cloud dissipates. The humidity halo broadens as the cloud ages and is also broader in the presence of wind shear than in its absence, especially on the downshear side of the cloud. The broadband calculation over the solar spectrum (0.2–4.0 μm) shows that the shortwave (SW) heating rate in the halo is about 11%–18% larger than the ambient environmental heating rate. The strongest halo-induced surface SW radiative forcing for all cases studied is about −0.2 W m−2, which is approximately a 0.02% change from the forcing without a halo.
Abstract
Significant enhancements in humidity around cumulus clouds, that is, the “cloud halos” observed in many aircraft penetrations, are simulated using a three-dimensional dynamic model. Five case studies show that humidity halos occur mainly near lateral cloud boundaries and also occur at cloud top and base when the cloud dissipates. The humidity halo broadens as the cloud ages and is also broader in the presence of wind shear than in its absence, especially on the downshear side of the cloud. The broadband calculation over the solar spectrum (0.2–4.0 μm) shows that the shortwave (SW) heating rate in the halo is about 11%–18% larger than the ambient environmental heating rate. The strongest halo-induced surface SW radiative forcing for all cases studied is about −0.2 W m−2, which is approximately a 0.02% change from the forcing without a halo.