Search Results

You are looking at 1 - 10 of 14 items for :

  • Author or Editor: John T. Allen x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Vittorio A. Gensini
,
Bradford S. Barrett
,
John T. Allen
,
David Gold
, and
Paul Sirvatka
Full access
Kevin H. Goebbert
,
John T. Allen
,
Victor A. Gensini
, and
Mohan Ramamurthy
Full access
Mateusz Taszarek
,
John T. Allen
,
Harold E. Brooks
,
Natalia Pilguj
, and
Bartosz Czernecki

Abstract

Long-term trends in the historical frequency of environments supportive of atmospheric convection are unclear, and only partially follow the expectations of a warming climate. This uncertainty is driven by the lack of unequivocal changes in the ingredients for severe thunderstorms (i.e., conditional instability, sufficient low-level moisture, initiation mechanism, and vertical wind shear). ERA5 hybrid-sigma data allow for superior characterization of thermodynamic parameters including convective inhibition, which is very sensitive to the number of levels in the lower troposphere. Using hourly data we demonstrate that long-term decreases in instability and stronger convective inhibition cause a decline in the frequency of thunderstorm environments over the southern United States, particularly during summer. Conversely, increasingly favorable conditions for tornadoes are observed during winter across the Southeast. Over Europe, a pronounced multidecadal increase in low-level moisture has provided positive trends in thunderstorm environments over the south, central, and north, with decreases over the east due to strengthening convective inhibition. Modest increases in vertical wind shear and storm-relative helicity have been observed over northwestern Europe and the Great Plains. Both continents exhibit negative trends in the fraction of environments with likely convective initiation. This suggests that despite increasing instability, thunderstorms in a warming climate may be less likely to develop due to stronger convective inhibition and lower relative humidity. Decreases in convective initiation and resulting precipitation may have long-term implications for agriculture, water availability, and the frequency of severe weather such as large hail and tornadoes. Our results also indicate that trends observed over the United States cannot be assumed to be representative of other continents.

Open access
Anton Seimon
,
John T. Allen
,
Tracie A. Seimon
,
Skip J. Talbot
, and
David K. Hoadley

Abstract

The 31 May 2013 El Reno, Oklahoma, tornado is used to demonstrate how a video imagery database crowdsourced from storm chasers can be time-corrected and georeferenced to inform severe storm research. The tornado’s exceptional magnitude (∼4.3-km diameter and ∼135 m s−1 winds) and the wealth of observational data highlight this storm as a subject for scientific investigation. The storm was documented by mobile research and fixed-base radars, lightning detection networks, and poststorm damage surveys. In addition, more than 250 individuals and groups of storm chasers navigating the tornado captured imagery, constituting a largely untapped resource for scientific investigation.

The El Reno Survey was created to crowdsource imagery from storm chasers and to compile submitted materials in a quality-controlled, open-access research database. Solicitations to storm chasers via social media and e-mail yielded 93 registrants, each contributing still and/or video imagery and metadata. Lightning flash interval is used for precise time calibration of contributed video imagery; when combined with georeferencing from open-source geographical information software, this enables detailed mapping of storm phenomena. A representative set of examples is presented to illustrate how this standardized database and a web-based visualization tool can inform research on tornadoes, lightning, and hail. The project database offers the largest archive of visual material compiled for a single storm event, accessible to the scientific community through a registration process. This approach also offers a new model for poststorm data collection, with instructional materials created to facilitate replication for research into both past and future storm events.

Full access
John T. Allen
,
Michael K. Tippett
,
Adam H. Sobel
, and
Chiara Lepore
Full access
Vittorio A. Gensini
,
Bradford S. Barrett
,
John T. Allen
,
David Gold
, and
Paul Sirvatka

Abstract

Large-scale weather patterns favorable for tornado occurrence have been understood for many decades. Yet prediction of tornadoes, especially at extended lead periods of more than a few days, remains an arduous task, partly due to the space and time scales involved. Recent research has shown that tropical convection, sea surface temperatures, and the Earth-relative atmospheric angular momentum can induce jet stream configurations that may increase or decrease the probability of tornado frequency across the United States. Applying this recent theoretical work in practice, on 1 March 2015, the authors began the Extended-Range Tornado Activity Forecast (ERTAF) project, with the following goals: 1) to have a map room–style discussion of the anticipated atmospheric state in the 2–3-week lead window; 2) to predict categorical level of tornado activity in that lead window; and 3) to learn from the forecasts through experience by identifying strengths and weaknesses in the methods, as well as identifying any potential scientific knowledge gaps. Over the last five years, the authors have shown skill in predicting U.S. tornado activity two to three weeks in advance during boreal spring. Unsurprisingly, skill is shown to be greater for forecasts spanning week 2 versus week 3. This manuscript documents these forecasting efforts, provides verification statistics, and shares the challenges and lessons learned from predicting tornado activity on the subseasonal time scale.

Free access
Mateusz Taszarek
,
John T. Allen
,
Harold E. Brooks
,
Natalia Pilguj
, and
Bartosz Czernecki
Full access
David P. Rogers
,
Clive E. Dorman
,
Kathleen A. Edwards
,
Ian M. Brooks
,
W. Kendall Melville
,
Stephen D. Burk
,
William T. Thompson
,
Teddy Holt
,
Linda M. Ström
,
Michael Tjernström
,
Branko Grisogono
,
John M. Bane
,
Wendell A. Nuss
,
Bruce M. Morley
, and
Allen J. Schanot

Some of the highlights of an experiment designed to study coastal atmospheric phenomena along the California coast (Coastal Waves 1996 experiment) are described. This study was designed to address several problems, including the cross-shore variability and turbulent structure of the marine boundary layer, the influence of the coast on the development of the marine layer and clouds, the ageostrophy of the flow, the dynamics of trapped events, the parameterization of surface fluxes, and the supercriticality of the marine layer.

Based in Monterey, California, the National Center for Atmospheric Research (NCAR) C-130 Hercules and the University of North Carolina Piper Seneca obtained a comprehensive set of measurements on the structure of the marine layer. The study focused on the effects of prominent topographic features on the wind. Downstream of capes and points, narrow bands of high winds are frequently encountered. The NCAR-designed Scanning Aerosol Backscatter Lidar (SABL) provided a unique opportunity to connect changes in the depth of the boundary layer with specific features in the dynamics of the flow field.

An integral part of the experiment was the use of numerical models as forecast and diagnostic tools. The Naval Research Laboratory's Coupled Ocean Atmosphere Model System (COAMPS) provided high-resolution forecasts of the wind field in the vicinity of capes and points, which aided the deployment of the aircraft. Subsequently, this model and the MIUU (University of Uppsala) numerical model were used to support the analysis of the field data.

These are some of the most comprehensive measurements of the topographically forced marine layer that have been collected. SABL proved to be an exceptionally useful tool to resolve the small-scale structure of the boundary layer and, combined with in situ turbulence measurements, provides new insight into the structure of the marine atmosphere. Measurements were made sufficiently far offshore to distinguish between the coastal and open ocean effects. COAMPS proved to be an excellent forecast tool and both it and the MIUU model are integral parts of the ongoing analysis. The results highlight the large spatial variability that occurs directly in response to topographic effects. Routine measurements are insufficient to resolve this variability. Numerical weather prediction model boundary conditions cannot properly define the forecast system and often underestimate the wind speed and surface wave conditions in the nearshore region.

This study was a collaborative effort between the National Science Foundation, the Office of Naval Research, the Naval Research Laboratory, and the National Oceanographic and Atmospheric Administration.

Full access
John T. Sullivan
,
Timothy Berkoff
,
Guillaume Gronoff
,
Travis Knepp
,
Margaret Pippin
,
Danette Allen
,
Laurence Twigg
,
Robert Swap
,
Maria Tzortziou
,
Anne M. Thompson
,
Ryan M. Stauffer
,
Glenn M. Wolfe
,
James Flynn
,
Sally E. Pusede
,
Laura M. Judd
,
William Moore
,
Barry D. Baker
,
Jay Al-Saadi
, and
Thomas J. McGee

Abstract

Coastal regions have historically represented a significant challenge for air quality investigations because of water–land boundary transition characteristics and a paucity of measurements available over water. Prior studies have identified the formation of high levels of ozone over water bodies, such as the Chesapeake Bay, that can potentially recirculate back over land to significantly impact populated areas. Earth-observing satellites and forecast models face challenges in capturing the coastal transition zone where small-scale meteorological dynamics are complex and large changes in pollutants can occur on very short spatial and temporal scales. An observation strategy is presented to synchronously measure pollutants “over land” and “over water” to provide a more complete picture of chemical gradients across coastal boundaries for both the needs of state and local environmental management and new remote sensing platforms. Intensive vertical profile information from ozone lidar systems and ozonesondes, obtained at two main sites, one over land and the other over water, are complemented by remote sensing and in situ observations of air quality from ground-based, airborne (both personned and unpersonned), and shipborne platforms. These observations, coupled with reliable chemical transport simulations, such as the National Oceanic and Atmospheric Administration (NOAA) National Air Quality Forecast Capability (NAQFC), are expected to lead to a more fully characterized and complete land–water interaction observing system that can be used to assess future geostationary air quality instruments, such as the National Aeronautics and Space Administration (NASA) Tropospheric Emissions: Monitoring of Pollution (TEMPO), and current low-Earth-orbiting satellites, such as the European Space Agency’s Sentinel-5 Precursor (S5-P) with its Tropospheric Monitoring Instrument (TROPOMI).

Open access
G. C Johnson
,
R Lumpkin
,
C Atkinson
,
Tiago Biló
,
Tim Boyer
,
Francis Bringas
,
Brendan R. Carter
,
Ivona Cetinić
,
Don P. Chambers
,
Duo Chan
,
Lijing Cheng
,
Leah Chomiak
,
Meghan F. Cronin
,
Shenfu Dong
,
Richard A. Feely
,
Bryan A. Franz
,
Meng Gao
,
Jay Garg
,
John Gilson
,
Gustavo Goni
,
Benjamin D. Hamlington
,
W. Hobbs
,
Zeng-Zhen Hu
,
Boyin Huang
,
Masayoshi Ishii
,
Svetlana Jevrejeva
,
W. Johns
,
Peter Landschützer
,
Matthias Lankhorst
,
Eric Leuliette
,
Ricardo Locarnini
,
John M. Lyman
,
Michael J. McPhaden
,
Mark A. Merrifield
,
Alexey Mishonov
,
Gary T. Mitchum
,
Ben I. Moat
,
Ivan Mrekaj
,
R. Steven Nerem
,
Sarah G. Purkey
,
Bo Qiu
,
James Reagan
,
Katsunari Sato
,
Claudia Schmid
,
Jonathan D. Sharp
,
David A. Siegel
,
David A. Smeed
,
Paul W. Stackhouse Jr.
,
William Sweet
,
Philip R. Thompson
,
Joaquin A. Triñanes
,
Denis L. Volkov
,
Rik Wanninkhof
,
Caihong Wen
,
Toby K. Westberry
,
Matthew J. Widlansky
,
J. Willis
,
Ping-Ping Xie
,
Xungang Yin
,
Huai-min Zhang
,
Li Zhang
,
Jessicca Allen
,
Amy V. Camper
,
Bridgette O. Haley
,
Gregory Hammer
,
S. Elizabeth Love-Brotak
,
Laura Ohlmann
,
Lukas Noguchi
,
Deborah B. Riddle
, and
Sara W. Veasey
Open access