Search Results
Abstract
Super resolution involves synthetically increasing the resolution of gridded data beyond their native resolution. Typically, this is done using interpolation schemes, which estimate sub-grid-scale values from neighboring data, and perform the same operation everywhere regardless of the large-scale context, or by requiring a network of radars with overlapping fields of view. Recently, significant progress has been made in single-image super resolution using convolutional neural networks. Conceptually, a neural network may be able to learn relations between large-scale precipitation features and the associated sub-pixel-scale variability and outperform interpolation schemes. Here, we use a deep convolutional neural network to artificially enhance the resolution of NEXRAD PPI scans. The model is trained on 6 months of reflectivity observations from the Langley Hill, Washington, radar (KLGX), and we find that it substantially outperforms common interpolation schemes for 4× and 8× resolution increases based on several objective error and perceptual quality metrics.
Abstract
Super resolution involves synthetically increasing the resolution of gridded data beyond their native resolution. Typically, this is done using interpolation schemes, which estimate sub-grid-scale values from neighboring data, and perform the same operation everywhere regardless of the large-scale context, or by requiring a network of radars with overlapping fields of view. Recently, significant progress has been made in single-image super resolution using convolutional neural networks. Conceptually, a neural network may be able to learn relations between large-scale precipitation features and the associated sub-pixel-scale variability and outperform interpolation schemes. Here, we use a deep convolutional neural network to artificially enhance the resolution of NEXRAD PPI scans. The model is trained on 6 months of reflectivity observations from the Langley Hill, Washington, radar (KLGX), and we find that it substantially outperforms common interpolation schemes for 4× and 8× resolution increases based on several objective error and perceptual quality metrics.