Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Joseph C. Hardin x
  • RELAMPAGO-CACTI: High Impact Weather in Subtropical South America x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Peter G. Veals
,
Adam C. Varble
,
James O. H. Russell
,
Joseph C. Hardin
, and
Edward J. Zipser

Abstract

An aerosol indirect effect on deep convective cores (DCCs), by which increasing aerosol concentration increases cloud-top height via enhanced latent heating and updraft velocity, has been proposed in many studies. However, the magnitude of this effect remains uncertain due to aerosol measurement limitations, modulation of the effect by meteorological conditions, and difficulties untangling meteorological and aerosol effects on DCCs. The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) campaign in 2018–19 produced concentrated aerosol and cloud observations in a location with frequent DCCs, providing an opportunity to examine the proposed aerosol indirect effect on DCC depth in a rigorous and robust manner. For periods throughout the campaign with well-mixed boundary layers, we analyze relationships that exist between aerosol variables (condensation nuclei concentration > 10 nm, 0.4% cloud condensation nuclei concentration, 55–1000-nm aerosol concentration, and aerosol optical depth) and meteorological variables [level of neutral buoyancy (LNB), convective available potential energy, midlevel relative humidity, and deep-layer vertical wind shear] with the maximum radar-echo-top height and cloud-top temperature (CTT) of DCCs. Meteorological variables such as LNB and deep-layer shear are strongly correlated with DCC depth. LNB is also highly correlated with three of the aerosol variables. After accounting for meteorological correlations, increasing values of the aerosol variables [with the exception of one formulation of aerosol optical depth (AOD)] are generally correlated at a statistically significant level with a warmer CTT of DCCs. Therefore, for the study region and period considered, increasing aerosol concentration is mostly associated with a decrease in DCC depth.

Full access
Adam C. Varble
,
Stephen W. Nesbitt
,
Paola Salio
,
Joseph C. Hardin
,
Nitin Bharadwaj
,
Paloma Borque
,
Paul J. DeMott
,
Zhe Feng
,
Thomas C. J. Hill
,
James N. Marquis
,
Alyssa Matthews
,
Fan Mei
,
Rusen Öktem
,
Vagner Castro
,
Lexie Goldberger
,
Alexis Hunzinger
,
Kevin R. Barry
,
Sonia M. Kreidenweis
,
Greg M. McFarquhar
,
Lynn A. McMurdie
,
Mikhail Pekour
,
Heath Powers
,
David M. Romps
,
Celeste Saulo
,
Beat Schmid
,
Jason M. Tomlinson
,
Susan C. van den Heever
,
Alla Zelenyuk
,
Zhixiao Zhang
, and
Edward J. Zipser

Abstract

The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign was designed to improve understanding of orographic cloud life cycles in relation to surrounding atmospheric thermodynamic, flow, and aerosol conditions. The deployment to the Sierras de Córdoba range in north-central Argentina was chosen because of very frequent cumulus congestus, deep convection initiation, and mesoscale convective organization uniquely observable from a fixed site. The C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar was deployed for the first time with over 50 ARM Mobile Facility atmospheric state, surface, aerosol, radiation, cloud, and precipitation instruments between October 2018 and April 2019. An intensive observing period (IOP) coincident with the RELAMPAGO field campaign was held between 1 November and 15 December during which 22 flights were performed by the ARM Gulfstream-1 aircraft. A multitude of atmospheric processes and cloud conditions were observed over the 7-month campaign, including numerous orographic cumulus and stratocumulus events; new particle formation and growth producing high aerosol concentrations; drizzle formation in fog and shallow liquid clouds; very low aerosol conditions following wet deposition in heavy rainfall; initiation of ice in congestus clouds across a range of temperatures; extreme deep convection reaching 21-km altitudes; and organization of intense, hail-containing supercells and mesoscale convective systems. These comprehensive datasets include many of the first ever collected in this region and provide new opportunities to study orographic cloud evolution and interactions with meteorological conditions, aerosols, surface conditions, and radiation in mountainous terrain.

Full access