Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Joseph S. Griffin x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
William L. Woodley
,
Cecilia G. Griffith
,
Joseph S. Griffin
, and
Scott C. Stromatt

Abstract

Quantitative precipitation estimates have been made for the GARP (Global Atmospheric Research Program) Atlantic Tropical Experiment (GATE) from geosynchronous, infrared satellite imagery and a computer-automated technique that is described in this paper. Volumetric rain estimates were made for the GATE A scale (1.43 × 107 km2) and for a 3° square (1.10 × 105 km2) that enclosed the B scale for time frames ranging from all of GATE (27 June—20 September 1974) down to 6 h segments. The estimates for the square are compared with independent rain measurements made by four C-band digital radars that were complemented by shipboard raingages. The A-scale estimates are compared to rainfall estimates generated by NASA using Nimbus 5 microwave imagery. Other analyses presented include: 1) comparisons of the satellite rain estimates over Africa with raingage measurements, 2) maps of satellite-inferred locations and frequencies of new cumulonimbus cloud formation, mergers and dissipations, 3) latitudinal precipitation cross sections along several longitudes and 4) diurnal rainfall patterns.

The satellite-generated B-scale rainfall patterning is similar to, and the rain volumes are within a factor of 1.10, of those provided by radar for phases 1 and 3. The isohyetal patterns are similar in phase 2, but the satellite estimates are low, relative to the radar, by a factor of 1.73. The B-scale disparity in phase 2 is probably due to the existence of rather shallow but rain-productive convective clouds in the B scale. This disparity apparently does not carry over to the A scale in phase 2. Comparison of NASA Electronically Scanning Microwave Radiometer (ESMR) rain estimates with ours for several areas within the A scale for all GATE suggests that the former is low relative to the latter by a factor of 1.50. The satellite estimates of rainfall in Africa are similar to measurements by raingages in all phases of GATE up to 11°N and progressively greater than the gage measurements north of this latitude toward the Sahara desert.

The diurnal rainfall studies suggest a midday (about 1200 GMT) maximum of rainfall over the water areas and a late evening maximum (about 0000 GMT) over Africa and the northern part of South America. The latitudinal cross sections along several longitudes of phase rainfall clearly show the west-southwest/east-northeast orientation of the Intertropical Convergence Zone (ITCZ), the diminution of the rainfall west-southwestward from Africa into the Atlantic, and the northward progression of the ITCZ from phase 1 into phases 2 and 3. The center of action for cloud formation, merger and dissipation, and the area of maximum rainfall (>1600 mm for all of GATE) occur along the southwest African coast near 11°N. This agrees with past climatologies for this region. Superposition of the satellite-generated rainfall maps and sea surface temperature maps by phase suggests a strong relationship between the two. Almost all of the rainfall occurs within 26°C sea surface temperature envelope. The mean daily coverage of rainfall and the mean rainfall in the raining areas for the A scale for all GATE are 20% and 14.1 mm day−1, respectively. These and other results are discussed.

Full access