Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: K. Arulananthan x
  • Journal of Physical Oceanography x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Yun Qiu
,
Weiqing Han
,
Xinyu Lin
,
B. Jason West
,
Yuanlong Li
,
Wen Xing
,
Xiaolin Zhang
,
K. Arulananthan
, and
Xiaogang Guo

Abstract

This study investigates the impact of salinity stratification on the upper-ocean response to a category 5 tropical cyclone, Phailin, that crossed the northern Bay of Bengal (BOB) from 8 to 13 October 2013. A drastic increase of up to 5.0 psu in sea surface salinity (SSS) was observed after Phailin’s passage, whereas a weak drop of below 0.5°C was observed in sea surface temperature (SST). Rightward biases were apparent in surface current and SSS but not evident in SST. Phailin-induced SST variations can be divided into the warming and cooling stages, corresponding to the existence of the thick barrier layer (BL) and temperature inversion before and erosion after Phailin’s passage, respectively. During the warming stage, SST increased due to strong entrainment of warmer water from the BL, which overcame the cooling induced by surface heat fluxes and horizontal advection. During the cooling stage, the entrainment and upwelling dominated the SST decrease. The preexistence of the BL, which reduced entrainment cooling by ~1.09°C day−1, significantly weakened the overall Phailin-induced SST cooling. The Hybrid Coordinate Ocean Model (HYCOM) experiments confirm the crucial roles of entrainment and upwelling in the Phailin-induced dramatic SSS increase and weak SST decrease. Analyses of upper-ocean stratification associated with 16 super TCs that occurred in the BOB during 1980–2015 show that intensifications of 13 TCs were associated with a thick isothermal layer, and 5 out of the 13 were associated with a thick BL. The calculation of TC intensity with and without considering subsurface temperature demonstrates the importance of large upper-ocean heat storage in TC growth.

Open access
Luc Rainville
,
Craig M. Lee
,
K. Arulananthan
,
S. U. P. Jinadasa
,
Harindra J. S. Fernando
,
W. N. C. Priyadarshani
, and
Hemantha Wijesekera

Abstract

We present high-resolution sustained, persistent observations of the ocean around Sri Lanka from autonomous gliders collected over several years, a region with complex, variable circulation patterns connecting the Bay of Bengal and the Arabian Sea to each other and the rest of the Indian Ocean. The Seaglider surveys resolve seasonal to interannual variability in vertical and horizontal structure, allowing quantification of volume, heat, and freshwater fluxes, as well as the transformations and transports of key water mass classes across sections normal to the east (2014–15) and south (2016–19) coasts of Sri Lanka. The resulting transports point to the importance of both surface and subsurface flows and show that the direct pathway along the Sri Lankan coast plays a significant role in the exchanges of waters between the Arabian Sea and the Bay of Bengal. Significant section-to-section variability highlights the need for sustained, long-term observations to quantify the circulation pathways and dynamics associated with exchange between the Bay of Bengal and Arabian Sea and provides context for interpreting observations collected as “snapshots” of more limited duration.

Significance Statement

The strong seasonal variations of the wind in the Indian Ocean create large and rapid changes in the ocean’s properties near Sri Lanka. This variable and poorly observed circulation is very important for how temperature and salinity are distributed across the northern Indian Ocean, both at the surface and at depths. Long-term and repeated surveys from autonomous Seagliders allow us to understand how freshwater inflow, atmospheric forcing, and underlying ocean variability act to produce observed contrasts (spatial and seasonal) in upper-ocean structure of the Bay of Bengal and Arabian Sea.

Open access