Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Kazuhisa Tsuboki x
  • Journal of Climate x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Sachie Kanada
Tetsuya Takemi
Masaya Kato
Shota Yamasaki
Hironori Fudeyasu
Kazuhisa Tsuboki
Osamu Arakawa
, and
Izuru Takayabu


Intense tropical cyclones (TCs) sometimes cause huge disasters, so it is imperative to explore the impacts of climate change on such TCs. Therefore, the authors conducted numerical simulations of the most destructive historical TC in Japanese history, Typhoon Vera (1959), in the current climate and a global warming climate. The authors used four nonhydrostatic models with a horizontal resolution of 5 km: the cloud-resolving storm simulator, the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model, the Japan Meteorological Agency (JMA) operational nonhydrostatic mesoscale model, and the Weather Research and Forecasting Model. Initial and boundary conditions for the control simulation were provided by the Japanese 55-year Reanalysis dataset. Changes between the periods of 1979–2003 and 2075–99 were estimated from climate runs of a 20-km-mesh atmospheric general circulation model, and these changes were added to the initial and boundary conditions of the control simulation to produce the future climate conditions.

Although the representation of inner-core structures varies largely between the models, all models project an increase in the maximum intensity of future typhoons. It is found that structural changes only appeared around the storm center with sudden changes in precipitation and near-surface wind speeds as the radius of maximum wind speed (RMW) contracted. In the future climate, the water vapor mixing ratio in the lower troposphere increased by 3–4 g kg−1. The increased water vapor allowed the eyewall updrafts to form continuously inside the RMW and contributed to rapid condensation in the taller and more intense updrafts.

Full access