Search Results
You are looking at 1 - 9 of 9 items for
- Author or Editor: Kenneth S. Johnson x
- Refine by Access: Content accessible to me x
Abstract
A method is developed to initialize convective storm simulations with Doppler radar-derived fields. Input fields for initialization include velocity, rainwater derived from radar reflectivity, and pressure and temperature fields obtained through thermodynamic retrieval. A procedure has been developed to fill in missing wind data, followed by a variational adjustment to the filled wind field to minimize “shocks” that would otherwise cause the simulated fields to deteriorate rapidly.
A series of experiments using data from a simulated storm establishes the feasibility of the initialization method. Multiple-Doppler radar observations from the 20 May 1977 Del City tornadic storm are used for the initialization experiments. Simulation results are shown and compared to observations taken at a later time. The simulated storm shows good agreement with the subsequent observations, though the simulated storm appears to be evolving faster than observed. Possible reasons for the discrepancies are discussed.
Abstract
A method is developed to initialize convective storm simulations with Doppler radar-derived fields. Input fields for initialization include velocity, rainwater derived from radar reflectivity, and pressure and temperature fields obtained through thermodynamic retrieval. A procedure has been developed to fill in missing wind data, followed by a variational adjustment to the filled wind field to minimize “shocks” that would otherwise cause the simulated fields to deteriorate rapidly.
A series of experiments using data from a simulated storm establishes the feasibility of the initialization method. Multiple-Doppler radar observations from the 20 May 1977 Del City tornadic storm are used for the initialization experiments. Simulation results are shown and compared to observations taken at a later time. The simulated storm shows good agreement with the subsequent observations, though the simulated storm appears to be evolving faster than observed. Possible reasons for the discrepancies are discussed.
Abstract
Observations of the 20 May 1977 tornadic storms are used to evaluate recent theories on the initiation of rotation at mid-and low levels and to verify recent thermodynamic retrieval results. Using the lengthy data record from a variety of sensors available for this day, it appears that the mechanism that initiates low-level rotation is different from that at midlevels. Attempts to identify the source of the low-level rotation as vertical tilting baroclinically generated horizontal vorticity were inconclusive.
The recent thermodynamic retrieval results of Hane and Ray and of Brandes for these storms are in good agreement with independent measurements where available. However, verification is hindered by the sparseness of these measurements. Noticeable differences in the region of the rear-flank downdraft suggest that there is room for improvement in the retrieval methods.
Investigation of the cyclic generation of rotation along gust fronts indicates that the source of low-level rotation is not derived from baroclinically generated horizontal vorticity as seems to be the case with the initial mesocyclone core. Instead, vertical vorticity amplification along the gust front leading to successive generation of mesocyclone cores and discrete mesocyclone propagation is the result of the concentration of low-level preexisting vertical vorticity through convergence.
Abstract
Observations of the 20 May 1977 tornadic storms are used to evaluate recent theories on the initiation of rotation at mid-and low levels and to verify recent thermodynamic retrieval results. Using the lengthy data record from a variety of sensors available for this day, it appears that the mechanism that initiates low-level rotation is different from that at midlevels. Attempts to identify the source of the low-level rotation as vertical tilting baroclinically generated horizontal vorticity were inconclusive.
The recent thermodynamic retrieval results of Hane and Ray and of Brandes for these storms are in good agreement with independent measurements where available. However, verification is hindered by the sparseness of these measurements. Noticeable differences in the region of the rear-flank downdraft suggest that there is room for improvement in the retrieval methods.
Investigation of the cyclic generation of rotation along gust fronts indicates that the source of low-level rotation is not derived from baroclinically generated horizontal vorticity as seems to be the case with the initial mesocyclone core. Instead, vertical vorticity amplification along the gust front leading to successive generation of mesocyclone cores and discrete mesocyclone propagation is the result of the concentration of low-level preexisting vertical vorticity through convergence.
Abstract
Aanderaa optode sensors for dissolved oxygen show remarkable stability when deployed on profiling floats, but these sensors suffer from poor calibration because of an apparent drift during storage (storage drift). It has been suggested that measurement of oxygen in air, during the period when a profiling float is on the surface, can be used to improve sensor calibration and to determine the magnitude of sensor drift while deployed in the ocean. The effect of air calibration on oxygen measurement quality with 47 profiling floats that were equipped with Aanderaa oxygen optode sensors is assessed. Recalibrated oxygen concentration measurements were compared to Winkler oxygen titrations that were made at the float deployment stations and to the World Ocean Atlas 2009 oxygen climatology. Recalibration of the sensor using air oxygen reduces the sensor error, defined as the difference from Winkler oxygen titrations in the mixed layer near the time of deployment, by about tenfold when compared to errors obtained with the factory calibration. The relative error of recalibrated sensors is <1% in surface waters. A total of 29 floats were deployed for time periods in excess of one year in ice-free waters. Linear changes in the percent of atmospheric oxygen reported by the sensor, relative to the oxygen partial pressure expected from the NCEP air pressure, range from −0.9% to +1.3% yr−1 with a mean of 0.2% ± 0.5% yr−1. Given that storage drift for optode sensors is only negative, it is concluded that there is no evidence for sensor drift after they are deployed and that other processes are responsible for the linear changes.
Abstract
Aanderaa optode sensors for dissolved oxygen show remarkable stability when deployed on profiling floats, but these sensors suffer from poor calibration because of an apparent drift during storage (storage drift). It has been suggested that measurement of oxygen in air, during the period when a profiling float is on the surface, can be used to improve sensor calibration and to determine the magnitude of sensor drift while deployed in the ocean. The effect of air calibration on oxygen measurement quality with 47 profiling floats that were equipped with Aanderaa oxygen optode sensors is assessed. Recalibrated oxygen concentration measurements were compared to Winkler oxygen titrations that were made at the float deployment stations and to the World Ocean Atlas 2009 oxygen climatology. Recalibration of the sensor using air oxygen reduces the sensor error, defined as the difference from Winkler oxygen titrations in the mixed layer near the time of deployment, by about tenfold when compared to errors obtained with the factory calibration. The relative error of recalibrated sensors is <1% in surface waters. A total of 29 floats were deployed for time periods in excess of one year in ice-free waters. Linear changes in the percent of atmospheric oxygen reported by the sensor, relative to the oxygen partial pressure expected from the NCEP air pressure, range from −0.9% to +1.3% yr−1 with a mean of 0.2% ± 0.5% yr−1. Given that storage drift for optode sensors is only negative, it is concluded that there is no evidence for sensor drift after they are deployed and that other processes are responsible for the linear changes.
Abstract
Reagent-free optical nitrate sensors [in situ ultraviolet spectrophotometer (ISUS)] can be used to detect nitrate throughout most of the ocean. Although the sensor is a relatively high-power device when operated continuously (7.5 W typical), the instrument can be operated in a low-power mode, where individual nitrate measurements require only a few seconds of instrument time and the system consumes only 45 J of energy per nitrate measurement. Operation in this mode has enabled the integration of ISUS sensors with Teledyne Webb Research's Autonomous Profiling Explorer (APEX) profiling floats with a capability to operate to 2000 m. The energy consumed with each nitrate measurement is low enough to allow 60 nitrate observations on each vertical profile to 1000 m. Vertical resolution varies from 5 m near the surface to 50 m near 1000 m, and every 100 m below that. Primary lithium batteries allow more than 300 vertical profiles from a depth of 1000 m to be made, which corresponds to an endurance near four years at a 5-day cycle time. This study details the experience in integrating ISUS sensors into Teledyne Webb Research's APEX profiling floats and the results that have been obtained throughout the ocean for periods up to three years.
Abstract
Reagent-free optical nitrate sensors [in situ ultraviolet spectrophotometer (ISUS)] can be used to detect nitrate throughout most of the ocean. Although the sensor is a relatively high-power device when operated continuously (7.5 W typical), the instrument can be operated in a low-power mode, where individual nitrate measurements require only a few seconds of instrument time and the system consumes only 45 J of energy per nitrate measurement. Operation in this mode has enabled the integration of ISUS sensors with Teledyne Webb Research's Autonomous Profiling Explorer (APEX) profiling floats with a capability to operate to 2000 m. The energy consumed with each nitrate measurement is low enough to allow 60 nitrate observations on each vertical profile to 1000 m. Vertical resolution varies from 5 m near the surface to 50 m near 1000 m, and every 100 m below that. Primary lithium batteries allow more than 300 vertical profiles from a depth of 1000 m to be made, which corresponds to an endurance near four years at a 5-day cycle time. This study details the experience in integrating ISUS sensors into Teledyne Webb Research's APEX profiling floats and the results that have been obtained throughout the ocean for periods up to three years.
Abstract
The California Current System is thought to be particularly vulnerable to ocean acidification, yet pH remains chronically undersampled along this coast, limiting our ability to assess the impacts of ocean acidification. To address this observational gap, we integrated the Deep-Sea-DuraFET, a solid-state pH sensor, onto a Spray underwater glider. Over the course of a year starting in April 2019, we conducted seven missions in central California that spanned 161 glider days and >1600 dives to a maximum depth of 1000 m. The sensor accuracy was estimated to be ± 0.01 based on comparisons to discrete samples taken alongside the glider (n = 105), and the precision was ±0.0016. CO2 partial pressure, dissolved inorganic carbon, and aragonite saturation state could be estimated from the pH data with uncertainty better than ± 2.5%, ± 8 μmol kg−1, and ± 2%, respectively. The sensor was stable to ±0.01 for the first 9 months but exhibited a drift of 0.015 during the last mission. The drift was correctable using a piecewise linear regression based on a reference pH field at 450 m estimated from published global empirical algorithms. These algorithms require accurate O2 as inputs; thus, protocols for a simple predeployment air calibration that achieved accuracy of better than 1% were implemented. The glider observations revealed upwelling of undersaturated waters with respect to aragonite to within 5 m below the surface near Monterey Bay. These observations highlight the importance of persistent observations through autonomous platforms in highly dynamic coastal environments.
Abstract
The California Current System is thought to be particularly vulnerable to ocean acidification, yet pH remains chronically undersampled along this coast, limiting our ability to assess the impacts of ocean acidification. To address this observational gap, we integrated the Deep-Sea-DuraFET, a solid-state pH sensor, onto a Spray underwater glider. Over the course of a year starting in April 2019, we conducted seven missions in central California that spanned 161 glider days and >1600 dives to a maximum depth of 1000 m. The sensor accuracy was estimated to be ± 0.01 based on comparisons to discrete samples taken alongside the glider (n = 105), and the precision was ±0.0016. CO2 partial pressure, dissolved inorganic carbon, and aragonite saturation state could be estimated from the pH data with uncertainty better than ± 2.5%, ± 8 μmol kg−1, and ± 2%, respectively. The sensor was stable to ±0.01 for the first 9 months but exhibited a drift of 0.015 during the last mission. The drift was correctable using a piecewise linear regression based on a reference pH field at 450 m estimated from published global empirical algorithms. These algorithms require accurate O2 as inputs; thus, protocols for a simple predeployment air calibration that achieved accuracy of better than 1% were implemented. The glider observations revealed upwelling of undersaturated waters with respect to aragonite to within 5 m below the surface near Monterey Bay. These observations highlight the importance of persistent observations through autonomous platforms in highly dynamic coastal environments.
Abstract
—J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES
Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.
In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.
Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.
While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.
The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.
In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.
In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.
Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.
A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.
As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.
In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.
On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.
Abstract
—J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES
Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.
In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.
Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.
While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.
The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.
In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.
In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.
Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.
A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.
As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.
In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.
On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.