Search Results
Abstract
The physical climate formulation and simulation characteristics of two new global coupled carbon–climate Earth System Models, ESM2M and ESM2G, are described. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory’s previous Climate Model version 2.1 (CM2.1) while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4p1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in El Niño–Southern Oscillation being overly strong in ESM2M and overly weak in ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to total heat content variability given its lack of long-term drift, gyre circulation, and ventilation in the North Pacific, tropical Atlantic, and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to surface circulation given its superior surface temperature, salinity, and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. The overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon–climate models.
Abstract
The physical climate formulation and simulation characteristics of two new global coupled carbon–climate Earth System Models, ESM2M and ESM2G, are described. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory’s previous Climate Model version 2.1 (CM2.1) while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4p1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in El Niño–Southern Oscillation being overly strong in ESM2M and overly weak in ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to total heat content variability given its lack of long-term drift, gyre circulation, and ventilation in the North Pacific, tropical Atlantic, and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to surface circulation given its superior surface temperature, salinity, and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. The overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon–climate models.
Abstract
The authors describe carbon system formulation and simulation characteristics of two new global coupled carbon–climate Earth System Models (ESM), ESM2M and ESM2G. These models demonstrate good climate fidelity as described in part I of this study while incorporating explicit and consistent carbon dynamics. The two models differ almost exclusively in the physical ocean component; ESM2M uses the Modular Ocean Model version 4.1 with vertical pressure layers, whereas ESM2G uses generalized ocean layer dynamics with a bulk mixed layer and interior isopycnal layers. On land, both ESMs include a revised land model to simulate competitive vegetation distributions and functioning, including carbon cycling among vegetation, soil, and atmosphere. In the ocean, both models include new biogeochemical algorithms including phytoplankton functional group dynamics with flexible stoichiometry. Preindustrial simulations are spun up to give stable, realistic carbon cycle means and variability. Significant differences in simulation characteristics of these two models are described. Because of differences in oceanic ventilation rates, ESM2M has a stronger biological carbon pump but weaker northward implied atmospheric CO2 transport than ESM2G. The major advantages of ESM2G over ESM2M are improved representation of surface chlorophyll in the Atlantic and Indian Oceans and thermocline nutrients and oxygen in the North Pacific. Improved tree mortality parameters in ESM2G produced more realistic carbon accumulation in vegetation pools. The major advantages of ESM2M over ESM2G are reduced nutrient and oxygen biases in the southern and tropical oceans.
Abstract
The authors describe carbon system formulation and simulation characteristics of two new global coupled carbon–climate Earth System Models (ESM), ESM2M and ESM2G. These models demonstrate good climate fidelity as described in part I of this study while incorporating explicit and consistent carbon dynamics. The two models differ almost exclusively in the physical ocean component; ESM2M uses the Modular Ocean Model version 4.1 with vertical pressure layers, whereas ESM2G uses generalized ocean layer dynamics with a bulk mixed layer and interior isopycnal layers. On land, both ESMs include a revised land model to simulate competitive vegetation distributions and functioning, including carbon cycling among vegetation, soil, and atmosphere. In the ocean, both models include new biogeochemical algorithms including phytoplankton functional group dynamics with flexible stoichiometry. Preindustrial simulations are spun up to give stable, realistic carbon cycle means and variability. Significant differences in simulation characteristics of these two models are described. Because of differences in oceanic ventilation rates, ESM2M has a stronger biological carbon pump but weaker northward implied atmospheric CO2 transport than ESM2G. The major advantages of ESM2G over ESM2M are improved representation of surface chlorophyll in the Atlantic and Indian Oceans and thermocline nutrients and oxygen in the North Pacific. Improved tree mortality parameters in ESM2G produced more realistic carbon accumulation in vegetation pools. The major advantages of ESM2M over ESM2G are reduced nutrient and oxygen biases in the southern and tropical oceans.