Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Kyle McDonald x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Kyle C. McDonald, John S. Kimball, Eni Njoku, Reiner Zimmermann, and Maosheng Zhao

Abstract

Evidence is presented from the satellite microwave remote sensing record that the timing of seasonal thawing and subsequent initiation of the growing season in early spring has advanced by approximately 8 days from 1988 to 2001 for the pan-Arctic basin and Alaska. These trends are highly variable across the region, with North America experiencing a larger advance relative to Eurasia and the entire region. Interannual variability in the timing of spring thaw as detected from the remote sensing record corresponded directly to seasonal anomalies in mean atmospheric CO2 concentrations for the region, including the timing of the seasonal draw down of atmospheric CO2 from terrestrial net primary productivity (NPP) in spring, and seasonal maximum and minimum CO2 concentrations. The timing of the seasonal thaw for a given year was also found to be a significant (P < 0.01) predictor of the seasonal amplitude of atmospheric CO2 for the following year. These results imply that the timing of seasonal thawing in spring has a major impact on terrestrial NPP and net carbon exchange at high latitudes. The initiation of the growing season has also been occurring earlier, on average, over the time period addressed in this study and may be a major mechanism driving observed atmospheric CO2 seasonal cycle advances, vegetation greening, and enhanced productivity for the northern high latitudes.

Full access
Yonghong Yi, John S. Kimball, Lucas A. Jones, Rolf H. Reichle, and Kyle C. McDonald

Abstract

The authors evaluated several land surface variables from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) product that are important for global ecological and hydrological studies, including daily maximum (T max) and minimum (T min) surface air temperatures, atmosphere vapor pressure deficit (VPD), incident solar radiation (SWrad), and surface soil moisture. The MERRA results were evaluated against in situ measurements, similar global products derived from satellite microwave [the Advanced Microwave Scanning Radiometer for Earth Observing System (EOS) (AMSR-E)] remote sensing and earlier generation atmospheric analysis [Goddard Earth Observing System version 4 (GEOS-4)] products. Relative to GEOS-4, MERRA is generally warmer (~0.5°C for T min and T max) and drier (~50 Pa for VPD) for low- and middle-latitude regions (<50°N) associated with reduced cloudiness and increased SWrad. MERRA and AMSR-E temperatures show relatively large differences (>3°C) in mountainous areas, tropical forest, and desert regions. Surface soil moisture estimates from MERRA (0–2-cm depth) and two AMSR-E products (~0–1-cm depth) are moderately correlated (R ~ 0.4) for middle-latitude regions with low to moderate vegetation biomass. The MERRA derived surface soil moisture also corresponds favorably with in situ observations (R = 0.53 ± 0.01, p < 0.001) in the midlatitudes, where its accuracy is directly proportional to the quality of MERRA precipitation. In the high latitudes, MERRA shows inconsistent soil moisture seasonal dynamics relative to in situ observations. The study’s results suggest that satellite microwave remote sensing may contribute to improved reanalysis accuracy where surface meteorological observations are sparse and in cold land regions subject to seasonal freeze–thaw transitions. The upcoming NASA Soil Moisture Active Passive (SMAP) mission is expected to improve MERRA-type reanalysis accuracy by providing accurate global mapping of freeze–thaw state and surface soil moisture with 2–3-day temporal fidelity and enhanced (≤9 km) spatial resolution.

Full access
Pedro Sequera, Jorge E. González, Kyle McDonald, Steve LaDochy, and Daniel Comarazamy

Abstract

Understanding the interactions between large-scale atmospheric and oceanic circulation patterns and changes in land cover and land use (LCLU) due to urbanization is a relevant subject in many coastal climates. Recent studies by Lebassi et al. found that the average maximum air temperatures during the summer in two populated California coastal areas decreased at low-elevation areas open to marine air penetration during the period of 1970–2005. This coastal cooling was attributed to an increase in sea-breeze activity.

The aims of this work are to better understand the coastal flow patterns and sea–land thermal gradient by improving the land-cover classification scheme in the region using updated airborne remote sensing data and to assess the suitability of the updated regional atmospheric modeling system for representing maritime flows in this region. This study uses high-resolution airborne data from the NASA Hyperspectral Infrared Imager (HyspIRI) mission preparatory flight campaign over Southern California and surface ground stations to compare observations against model estimations.

Five new urban land classes were created using broadband albedo derived from the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) sensor and then assimilated into the Weather Research and Forecasting (WRF) Model. The updated model captures the diurnal spatial and temporal sea-breeze patterns in the region. Results show notable improvements of simulated daytime surface temperature and coastal winds using the HyspIRI-derived products in the model against the default land classification, reaffirming the importance of accounting for heterogeneity of urban surface properties.

Full access
Robert E. Davis, Thomas H. Painter, Rick Forster, Don Cline, Richard Armstrong, Terry Haran, Kyle McDonald, and Kelly Elder

Abstract

This paper describes satellite data collected as part of the 2002/03 Cold Land Processes Experiment (CLPX). These data include multispectral and hyperspectral optical imaging, and passive and active microwave observations of the test areas. The CLPX multispectral optical data include the Advanced Very High Resolution Radiometer (AVHRR), the Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Multi-angle Imaging Spectroradiometer (MISR). The spaceborne hyperspectral optical data consist of measurements acquired with the NASA Earth Observing-1 (EO-1) Hyperion imaging spectrometer. The passive microwave data include observations from the Special Sensor Microwave Imager (SSM/I) and the Advanced Microwave Scanning Radiometer (AMSR) for Earth Observing System (EOS; AMSR-E). Observations from the Radarsat synthetic aperture radar and the SeaWinds scatterometer flown on QuikSCAT make up the active microwave data.

Full access
Janet Hardy, Robert Davis, Yeohoon Koh, Don Cline, Kelly Elder, Richard Armstrong, Hans-Peter Marshall, Thomas Painter, Gilles Castres Saint-Martin, Roger DeRoo, Kamal Sarabandi, Tobias Graf, Toshio Koike, and Kyle McDonald

Abstract

The local scale observation site (LSOS) is the smallest study site (0.8 ha) of the 2002/03 Cold Land Processes Experiment (CLPX) and is located within the Fraser mesocell study area. It was the most intensively measured site of the CLPX, and measurements here had the greatest temporal component of all CLPX sites. Measurements made at the LSOS were designed to produce a comprehensive assessment of the snow, soil, and vegetation characteristics viewed by the ground-based remote sensing instruments. The objective of the ground-based microwave remote sensing was to collect time series of active and passive microwave spectral signatures over snow, soil, and forest, which is coincident with the intensive physical characterization of these features. Ground-based remote sensing instruments included frequency modulated continuous wave (FMCW) radars operating over multiple microwave bandwidths; the Ground-Based Microwave Radiometer (GBMR-7) operating at channels 18.7, 23.8, 36.5, and 89 GHz; and in 2003, an L-, C-, X- and Ku-band scatterometer radar system. Snow and soil measurements included standard snow physical properties, snow wetness, snow depth transects, and soil moisture. The stem and canopy temperature and xylem sap flux of several trees were monitored continuously. Five micrometeorological towers monitored ambient conditions and provided forcing datasets for 1D snow and soil models. Arrays of pyranometers (0.3–3 μm) and a scanning thermal radiometer (8–12 μm) characterized the variability of radiative receipt in the forests. A field spectroradiometer measured the hyperspectral hemispherical-directional reflectance of the snow surface. These measurements, together with the ground-based remote sensing, provide the framework for evaluating and improving microwave radiative transfer models and coupling them to land surface models. The dataset is archived at the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado.

Full access
Michael A. Rawlins, Michael Steele, Marika M. Holland, Jennifer C. Adam, Jessica E. Cherry, Jennifer A. Francis, Pavel Ya Groisman, Larry D. Hinzman, Thomas G. Huntington, Douglas L. Kane, John S. Kimball, Ron Kwok, Richard B. Lammers, Craig M. Lee, Dennis P. Lettenmaier, Kyle C. McDonald, Erika Podest, Jonathan W. Pundsack, Bert Rudels, Mark C. Serreze, Alexander Shiklomanov, Øystein Skagseth, Tara J. Troy, Charles J. Vörösmarty, Mark Wensnahan, Eric F. Wood, Rebecca Woodgate, Daqing Yang, Ke Zhang, and Tingjun Zhang

Abstract

Hydrologic cycle intensification is an expected manifestation of a warming climate. Although positive trends in several global average quantities have been reported, no previous studies have documented broad intensification across elements of the Arctic freshwater cycle (FWC). In this study, the authors examine the character and quantitative significance of changes in annual precipitation, evapotranspiration, and river discharge across the terrestrial pan-Arctic over the past several decades from observations and a suite of coupled general circulation models (GCMs). Trends in freshwater flux and storage derived from observations across the Arctic Ocean and surrounding seas are also described.

With few exceptions, precipitation, evapotranspiration, and river discharge fluxes from observations and the GCMs exhibit positive trends. Significant positive trends above the 90% confidence level, however, are not present for all of the observations. Greater confidence in the GCM trends arises through lower interannual variability relative to trend magnitude. Put another way, intrinsic variability in the observations tends to limit confidence in trend robustness. Ocean fluxes are less certain, primarily because of the lack of long-term observations. Where available, salinity and volume flux data suggest some decrease in saltwater inflow to the Barents Sea (i.e., a decrease in freshwater outflow) in recent decades. A decline in freshwater storage across the central Arctic Ocean and suggestions that large-scale circulation plays a dominant role in freshwater trends raise questions as to whether Arctic Ocean freshwater flows are intensifying. Although oceanic fluxes of freshwater are highly variable and consistent trends are difficult to verify, the other components of the Arctic FWC do show consistent positive trends over recent decades. The broad-scale increases provide evidence that the Arctic FWC is experiencing intensification. Efforts that aim to develop an adequate observation system are needed to reduce uncertainties and to detect and document ongoing changes in all system components for further evidence of Arctic FWC intensification.

Full access