Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: L. C. Bender III x
  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
L. C. Bender III
,
N. L. Guinasso Jr.
,
J. N. Walpert
, and
S. D. Howden

Abstract

In August 2005, the eye of Hurricane Katrina passed 90 km to the west of a 3-m discus buoy deployed in the Mississippi Sound and operated by the Central Gulf of Mexico Ocean Observing System (CenGOOS). The buoy motions were measured with a strapped-down, 6 degrees of freedom accelerometer, a three-axis magnetometer, and from the displacement of a GPS antenna measured by postprocessed-kinematic GPS. Recognizing that an accelerometer experiences a large offset due to gravity, the authors investigated four different means of computing wave heights. In the most widely used method for a buoy with a strapped-down, 1D accelerometer, wave heights are overestimated by 26% on average and up to 56% during the peak of the hurricane. In the second method, the component of gravity is removed from the deck relative z-axis accelerations, requiring pitch and roll information. This is most similar to the motion of the GPS antenna and reduces the overestimation to only 5% on average. In the third method, the orientation data are used to obtain a very accurate estimate of the vertical acceleration, reducing the overestimation of wave heights to 1%. The fourth method computes an estimate of the true earth-referenced vertical accelerations using the accelerations from all three axes but not the pitch and roll information. It underestimates the wave heights by 2.5%. The fifth method uses the acceleration from all three axes and the pitch and roll information to obtain the earth-referenced vertical acceleration of the buoy, the most accurate measure of the true wave vertical acceleration. The primary conclusion of this work is that the measured deck relative accelerations from a strapped-down, 1D accelerometer must be tilt corrected in environments of high wave heights.

Full access
L. C. Bender III
,
S. D. Howden
,
D. Dodd
, and
N. L. Guinasso Jr.

Abstract

In August 2005 the eye of Hurricane Katrina passed 49 n mi to the west of a 3-m discus buoy operated by the Central Gulf of Mexico Ocean Observing System (CenGOOS). Buoy motions were measured with a strapped-down 6 degrees of freedom accelerometer, a three-axis magnetometer, and a survey-grade GPS receiver. The significant wave heights were computed from the buoy’s accelerometer record and from the dual-frequency GPS measurements that were processed in two different ways. The first method was postprocessed kinematic (PPK) GPS, which requires another GPS receiver at a fixed known location, and the other was precise point positioning (PPP) GPS, which is another postprocessed positioning technique that yields absolute rather than differential positions. Unlike inertial measurement units, either GPS technique can be used to obtain both waves and water levels. The purpose of this note is to demonstrate the excellent reliability and accuracy of both methods for determining wave heights and periods from a GPS record. When the motion of the GPS antenna is properly understood as the motion of the buoy deck and not the true vertical motion of the sea surface, the GPS wave heights are as reliable as a strapped-down 1D accelerometer.

Full access