Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Luke P. Van Roekel x
  • Journal of Physical Oceanography x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Peter E. Hamlington
,
Luke P. Van Roekel
,
Baylor Fox-Kemper
,
Keith Julien
, and
Gregory P. Chini

Abstract

The interactions between boundary layer turbulence, including Langmuir turbulence, and submesoscale processes in the oceanic mixed layer are described using large-eddy simulations of the spindown of a temperature front in the presence of submesoscale eddies, winds, and waves. The simulations solve the surface-wave-averaged Boussinesq equations with Stokes drift wave forcing at a resolution that is sufficiently fine to capture small-scale Langmuir turbulence. A simulation without Stokes drift forcing is also performed for comparison. Spatial and spectral properties of temperature, velocity, and vorticity fields are described, and these fields are scale decomposed in order to examine multiscale fluxes of momentum and buoyancy. Buoyancy flux results indicate that Langmuir turbulence counters the restratifying effects of submesoscale eddies, leading to small-scale vertical transport and mixing that is 4 times greater than in the simulations without Stokes drift forcing. The observed fluxes are also shown to be in good agreement with results from an asymptotic analysis of the surface-wave-averaged, or Craik–Leibovich, equations. Regions of potential instability in the flow are identified using Richardson and Rossby numbers, and it is found that mixed gravitational/symmetric instabilities are nearly twice as prevalent when Langmuir turbulence is present, in contrast to simulations without Stokes drift forcing, which are dominated by symmetric instabilities. Mixed layer depth calculations based on potential vorticity and temperature show that the mixed layer is up to 2 times deeper in the presence of Langmuir turbulence. Differences between measures of the mixed layer depth based on potential vorticity and temperature are smaller in the simulations with Stokes drift forcing, indicating a reduced incidence of symmetric instabilities in the presence of Langmuir turbulence.

Full access
Luke P. Van Roekel
,
Taka Ito
,
Patrick T. Haertel
, and
David A. Randall

Abstract

The Lagrangian ocean model is used as a tool to simulate the response of the basin-scale overturning circulation to spatially variable diapycnal mixing in an idealized ocean basin. The model explicitly calculates the positions, velocities, and tracer properties of water parcels. Owing to its Lagrangian formulation, numerical diffusion is completely eliminated and water parcel pathways and water mass ages can be quantified within the framework of the discrete, advective transit time distribution. To illustrate the ventilation pathways, simulated trajectories were tracked backward in time from the interior ocean to the surface mixed layer where the water parcel was last in contact with the atmosphere. This new diagnostic has been applied to examine the response of the meridional overturning circulation to highly localized diapycnal mixing through sensitivity experiments. In particular, the focus is on three simulations: the first holds vertical diffusivity uniform; in the second, the vertical diffusivity is confined within an equatorial box; and the third simulation has a diffusivity pattern based on idealized hurricane-induced mixing. Domain-integrated deep ventilation rates and heat transport are similar between the first two cases. However, locally enhanced mixing yields about 30% younger water mass age in the tropical thermocline due to intense localized upwelling. In the third simulation, a slower ventilation rate of deep waters is found to be due to the lack of abyssal mixing. These results are interpreted using the classical theories of abyssal circulation, highlighting the strong sensitivity of the ventilation pathways to the spatial distribution of diapycnal mixing.

Full access
Abigail S. Bodner
,
Baylor Fox-Kemper
,
Leah Johnson
,
Luke P. Van Roekel
,
James C. McWilliams
,
Peter P. Sullivan
,
Paul S. Hall
, and
Jihai Dong

Abstract

Current submesoscale restratification parameterizations, which help set mixed layer depth in global climate models, depend on a simplistic scaling of frontal width shown to be unreliable in several circumstances. Observations and theory indicate that frontogenesis is common, but stable frontal widths arise in the presence of turbulence and instabilities that participate in keeping fronts at the scale observed, the arrested scale. Here we propose a new scaling law for arrested frontal width as a function of turbulent fluxes via the turbulent thermal wind (TTW) balance. A variety of large-eddy simulations (LES) of strain-induced fronts and TTW-induced filaments are used to evaluate this scaling. Frontal width given by boundary layer parameters drawn from observations in the General Ocean Turbulence Model (GOTM) are found qualitatively consistent with the observed range in regions of active submesoscales. The new arrested front scaling is used to modify the mixed layer eddy restratification parameterization commonly used in coarse-resolution climate models. Results in CESM-POP2 reveal the climate model’s sensitivity to the parameterization update and changes in model biases. A comprehensive multimodel study is in planning for further testing.

Significance Statement

The ocean surface plays a major role in the climate system, primarily through exchange in properties, such as in heat and carbon, between the ocean and atmosphere. Accurate model representation of ocean surface processes is crucial for climate simulations, yet they tend to be too small, fast, or complex to be resolved. Significant efforts lie in approximating these small-scale processes using reduced expressions that are solved by the model. This study presents an improved representation of the ocean surface in climate models by capturing some of the synergy that has been missing between the processes that define it. Results encourage further testing across a wider range of models to comprehensively evaluate the effects of this adjustment in climate simulations.

Free access