Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: M. Khairoutdinov x
  • Journal of Climate x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Bidyut B. Goswami, R. P. M. Krishna, P. Mukhopadhyay, Marat Khairoutdinov, and B. N. Goswami


An analysis of a 5-yr (from 1 January 2009 to 31 December 2013) free run of the superparameterized (SP) Climate Forecast System (CFS) version 2 (CFSv2) (SP-CFS), implemented for the first time at a spectral triangular truncation at wavenumber 62 (T62) atmospheric horizontal resolution, is presented. The SP-CFS simulations are evaluated against observations and traditional convection parameterized CFSv2 simulations at T62 resolution as well as at some higher resolutions. The metrics for evaluating the model performance are chosen in order to mainly address the improvement in systematic biases observed in the CFSv2 documented in earlier studies. While the primary focus of this work is on evaluating the improvement of the simulation of the Indian summer monsoon (ISM) by the SP-CFS model, some results are also presented within the context of the global climate. The SP-CFS significantly reduces the dry bias of precipitation over the Indian subcontinent and better captures the monsoon intraseasonal oscillation (MISO) modes. SP-CFS also improves the northward and eastward propagation of high- and low-frequency modes of ISM. Compared to CFSv2, the SP-CFS model simulates improved convectively coupled equatorial waves; better temperature structures both spatially and vertically, leading to a significantly improved relative distribution of variance for the synoptic disturbances and low-frequency tropical intraseasonal oscillations (ISOs). This analysis of the development of SP-CFS is particularly important as it shows promise for improving the cloud process representation through an SP framework and is able to improve the mean as well as intraseasonal characteristics of CFSv2 within the context of the ISM.

Full access
D. Kim, K. Sperber, W. Stern, D. Waliser, I.-S. Kang, E. Maloney, W. Wang, K. Weickmann, J. Benedict, M. Khairoutdinov, M.-I. Lee, R. Neale, M. Suarez, K. Thayer-Calder, and G. Zhang


The ability of eight climate models to simulate the Madden–Julian oscillation (MJO) is examined using diagnostics developed by the U.S. Climate Variability and Predictability (CLIVAR) MJO Working Group. Although the MJO signal has been extracted throughout the annual cycle, this study focuses on the boreal winter (November–April) behavior. Initially, maps of the mean state and variance and equatorial space–time spectra of 850-hPa zonal wind and precipitation are compared with observations. Models best represent the intraseasonal space–time spectral peak in the zonal wind compared to that of precipitation. Using the phase–space representation of the multivariate principal components (PCs), the life cycle properties of the simulated MJOs are extracted, including the ability to represent how the MJO evolves from a given subphase and the associated decay time scales. On average, the MJO decay (e-folding) time scale for all models is shorter (∼20–29 days) than observations (∼31 days). All models are able to produce a leading pair of multivariate principal components that represents eastward propagation of intraseasonal wind and precipitation anomalies, although the fraction of the variance is smaller than observed for all models. In some cases, the dominant time scale of these PCs is outside of the 30–80-day band.

Several key variables associated with the model’s MJO are investigated, including the surface latent heat flux, boundary layer (925 hPa) moisture convergence, and the vertical structure of moisture. Low-level moisture convergence ahead (east) of convection is associated with eastward propagation in most of the models. A few models are also able to simulate the gradual moistening of the lower troposphere that precedes observed MJO convection, as well as the observed geographical difference in the vertical structure of moisture associated with the MJO. The dependence of rainfall on lower tropospheric relative humidity and the fraction of rainfall that is stratiform are also discussed, including implications these diagnostics have for MJO simulation. Based on having the most realistic intraseasonal multivariate empirical orthogonal functions, principal component power spectra, equatorial eastward propagating outgoing longwave radiation (OLR), latent heat flux, low-level moisture convergence signals, and vertical structure of moisture over the Eastern Hemisphere, the superparameterized Community Atmosphere Model (SPCAM) and the ECHAM4/Ocean Isopycnal Model (OPYC) show the best skill at representing the MJO.

Full access