Search Results
You are looking at 1 - 5 of 5 items for :
- Author or Editor: Maria Flatau x
- Journal of Climate x
- Refine by Access: Content accessible to me x
Abstract
Mass and heat budgets in the Gulf of Alaska during the 1991–94 El Niño are examined using hydrographic data from several cruises undertaken as part of the International North Pacific Ocean Climate program and the repeated Canadian hydrographic sections out to Ocean Weather Station Papa. The geostrophic ocean circulation resulted in convergence of heat into the region in spring 1992 and spring 1993. The advective heat convergence in spring 1992 corresponded to an average surface heat flux from the ocean to the atmosphere of about 74 W m−2 in comparison with only 30 W m−2 during spring 1993. The larger ocean heat loss to the atmosphere in 1992 followed a winter of large tropical SST anomalies and anomalously low pressure in the Aleutian low.
Abstract
Mass and heat budgets in the Gulf of Alaska during the 1991–94 El Niño are examined using hydrographic data from several cruises undertaken as part of the International North Pacific Ocean Climate program and the repeated Canadian hydrographic sections out to Ocean Weather Station Papa. The geostrophic ocean circulation resulted in convergence of heat into the region in spring 1992 and spring 1993. The advective heat convergence in spring 1992 corresponded to an average surface heat flux from the ocean to the atmosphere of about 74 W m−2 in comparison with only 30 W m−2 during spring 1993. The larger ocean heat loss to the atmosphere in 1992 followed a winter of large tropical SST anomalies and anomalously low pressure in the Aleutian low.
Abstract
A tropical–polar connection and its seasonal dependence are examined using the real-time multivariate Madden–Julian oscillation (MJO) (RMM) index and daily indices for the annular modes, the Arctic Oscillation (AO) and the Antarctic Oscillation (AAO). On the intraseasonal time scale, the MJO appears to force the annular modes in both hemispheres. On this scale, during the cold season, the convection in the Indian Ocean precedes the increase of the AO/AAO. Interestingly, during the boreal winter (Southern Hemisphere warm season), strong MJOs in the Indian Ocean are related to a decrease of the AAO index, and AO/AAO tendencies are out of phase. On the longer time scales, a persistent AO/AAO anomaly appears to influence the convection in the tropical belt and impact the distribution of MJO-preferred phases. It is shown that this may be a result of the sea surface temperature (SST) changes related to a persistent AO, with cooling over the Indian Ocean and warming over Indonesia. In the Southern Hemisphere, the SST anomalies are to some extent also related to a persistent AAO pattern, but this relationship is much weaker and appears only during the Southern Hemisphere cold season. On the basis of these results, a mechanism involving the air–sea interaction in the tropics is suggested as a possible link between persistent AO and convective activity in the Indian Ocean and western Pacific.
Abstract
A tropical–polar connection and its seasonal dependence are examined using the real-time multivariate Madden–Julian oscillation (MJO) (RMM) index and daily indices for the annular modes, the Arctic Oscillation (AO) and the Antarctic Oscillation (AAO). On the intraseasonal time scale, the MJO appears to force the annular modes in both hemispheres. On this scale, during the cold season, the convection in the Indian Ocean precedes the increase of the AO/AAO. Interestingly, during the boreal winter (Southern Hemisphere warm season), strong MJOs in the Indian Ocean are related to a decrease of the AAO index, and AO/AAO tendencies are out of phase. On the longer time scales, a persistent AO/AAO anomaly appears to influence the convection in the tropical belt and impact the distribution of MJO-preferred phases. It is shown that this may be a result of the sea surface temperature (SST) changes related to a persistent AO, with cooling over the Indian Ocean and warming over Indonesia. In the Southern Hemisphere, the SST anomalies are to some extent also related to a persistent AAO pattern, but this relationship is much weaker and appears only during the Southern Hemisphere cold season. On the basis of these results, a mechanism involving the air–sea interaction in the tropics is suggested as a possible link between persistent AO and convective activity in the Indian Ocean and western Pacific.
Abstract
Double monsoon onset develops when the strong convection in the Bay of Bengal is accompanied by the monsoonlike circulation and appears in the Indian Ocean in early May, which is about 3 weeks earlier than the climatological date of the onset (1 Jun). The initial “bogus onset” is followed by the flow weakening or reversal and clear-sky and dry conditions over the monsoon region. The best example of such a phenomenon is the development of the summer monsoon in 1995, when monsoonlike perturbations that appeared in mid-May disappeared by the end of the month and were followed by a heat wave in India, delaying onset of the monsoon. The climatology of double onsets is analyzed, and it is shown that they are associated with delay of the monsoon rainfall over India. This analysis indicates that the development of bogus onsets depends on the timing of intraseasonal oscillation in the Indian Ocean and the propagation of convective episodes into the western Pacific. There is evidence that an SST evolution in the Bay of Bengal and the western Pacific plays an important role in this phenomenon. It is shown that in the case of the double monsoon onset it is possible to predict hot and dry conditions in India before the real monsoon onset. In the 32 yr of climatological data, six cases of double monsoon onset were identified.
Abstract
Double monsoon onset develops when the strong convection in the Bay of Bengal is accompanied by the monsoonlike circulation and appears in the Indian Ocean in early May, which is about 3 weeks earlier than the climatological date of the onset (1 Jun). The initial “bogus onset” is followed by the flow weakening or reversal and clear-sky and dry conditions over the monsoon region. The best example of such a phenomenon is the development of the summer monsoon in 1995, when monsoonlike perturbations that appeared in mid-May disappeared by the end of the month and were followed by a heat wave in India, delaying onset of the monsoon. The climatology of double onsets is analyzed, and it is shown that they are associated with delay of the monsoon rainfall over India. This analysis indicates that the development of bogus onsets depends on the timing of intraseasonal oscillation in the Indian Ocean and the propagation of convective episodes into the western Pacific. There is evidence that an SST evolution in the Bay of Bengal and the western Pacific plays an important role in this phenomenon. It is shown that in the case of the double monsoon onset it is possible to predict hot and dry conditions in India before the real monsoon onset. In the 32 yr of climatological data, six cases of double monsoon onset were identified.
Abstract
Changes in surface circulation in the subpolar North Atlantic are documented for the recent interannual switch in the North Atlantic Oscillation (NAO) index from positive values in the early 1990s to negative values in 1995/96. Data from Lagrangian drifters, which were deployed in the North Atlantic from 1992 to 1998, were used to compute the mean and varying surface currents. NCEP winds were used to calculate the Ekman component, allowing isolation of the geostrophic currents. The mean Ekman velocities are considerably smaller than the mean total velocities that resemble historical analyses. The northeastward flow of the North Atlantic Current is organized into three strong cores associated with topography: along the eastern boundary in Rockall Trough, in the Iceland Basin (the subpolar front), and on the western flank of the Reykjanes Ridge (Irminger Current). The last is isolated in this Eulerian mean from the rest of the North Atlantic Current by a region of weak velocities on the east side of the Reykjanes Ridge.
The drifter results during the two different NAO periods are compared with geostrophic flow changes calculated from the NASA/Pathfinder monthly gridded sea surface height (SSH) variability products and the Advanced Very High Resolution Radiometer (AVHRR) SST data. During the positive NAO years the northeastward flow in the North Atlantic Current appeared stronger and the circulation in the cyclonic gyre in the Irminger Basin became more intense. This was consistent with the geostrophic velocities calculated from altimetry data and surface temperature changes from AVHRR SST data, which show that during the positive NAO years, with stronger westerlies, the subpolar front was sharper and located farther east. SST gradients intensified in the North Atlantic Current, Irminger Basin, and east of the Shetland Islands during the positive NAO phase, associated with stronger currents. SST differences between positive and negative NAO years were consistent with changes in air–sea heat flux and the eastward shift of the subpolar front. SST advection, as diagnosed from the drifters, likely acted to reduce the SST differences.
Abstract
Changes in surface circulation in the subpolar North Atlantic are documented for the recent interannual switch in the North Atlantic Oscillation (NAO) index from positive values in the early 1990s to negative values in 1995/96. Data from Lagrangian drifters, which were deployed in the North Atlantic from 1992 to 1998, were used to compute the mean and varying surface currents. NCEP winds were used to calculate the Ekman component, allowing isolation of the geostrophic currents. The mean Ekman velocities are considerably smaller than the mean total velocities that resemble historical analyses. The northeastward flow of the North Atlantic Current is organized into three strong cores associated with topography: along the eastern boundary in Rockall Trough, in the Iceland Basin (the subpolar front), and on the western flank of the Reykjanes Ridge (Irminger Current). The last is isolated in this Eulerian mean from the rest of the North Atlantic Current by a region of weak velocities on the east side of the Reykjanes Ridge.
The drifter results during the two different NAO periods are compared with geostrophic flow changes calculated from the NASA/Pathfinder monthly gridded sea surface height (SSH) variability products and the Advanced Very High Resolution Radiometer (AVHRR) SST data. During the positive NAO years the northeastward flow in the North Atlantic Current appeared stronger and the circulation in the cyclonic gyre in the Irminger Basin became more intense. This was consistent with the geostrophic velocities calculated from altimetry data and surface temperature changes from AVHRR SST data, which show that during the positive NAO years, with stronger westerlies, the subpolar front was sharper and located farther east. SST gradients intensified in the North Atlantic Current, Irminger Basin, and east of the Shetland Islands during the positive NAO phase, associated with stronger currents. SST differences between positive and negative NAO years were consistent with changes in air–sea heat flux and the eastward shift of the subpolar front. SST advection, as diagnosed from the drifters, likely acted to reduce the SST differences.
Abstract
Moist static energy (MSE) and ocean heat content (OHC) in the tropics are inextricably linked. The processes by which sources and sinks of OHC modulate column integrated MSE in the Indian Ocean (IO) are explored through a reformulation of the MSE budget using atmosphere and ocean reanalysis data. In the reframed MSE budget, interfacial air–sea turbulent and radiative fluxes are replaced for information on upper ocean dynamics, thus “mooring” the MSE tendency to the subsurface ocean. On subseasonal time scales, ocean forcing is largely responsible for the amplification of MSE anomalies across the IO, with basin average growth rates of 10% day−1. Local OHC depletion is the leading contributor to anomalous MSE amplification with average rates of 12% day−1. Along the equator, MSE is amplified by OHC vertical advection. Ocean forcing only weakly reduces the propagation tendency of MSE anomalies (−2% day−1), with propagation predominantly resulting from atmosphere forcing (10% day−1). OHC in the IO acts as an MSE reservoir that is expended during periods of enhanced intraseasonal atmosphere convection and recharged during periods of suppressed convection. Because OHC is an MSE source during enhanced intraseasonal convection periods, it largely offsets the negative MSE tendency produced by horizontal advection in the atmosphere. The opposite effect occurs during suppressed convection periods, where OHC is a sink of MSE and counters the positive MSE tendency produced by horizontal advection in the atmosphere.
Abstract
Moist static energy (MSE) and ocean heat content (OHC) in the tropics are inextricably linked. The processes by which sources and sinks of OHC modulate column integrated MSE in the Indian Ocean (IO) are explored through a reformulation of the MSE budget using atmosphere and ocean reanalysis data. In the reframed MSE budget, interfacial air–sea turbulent and radiative fluxes are replaced for information on upper ocean dynamics, thus “mooring” the MSE tendency to the subsurface ocean. On subseasonal time scales, ocean forcing is largely responsible for the amplification of MSE anomalies across the IO, with basin average growth rates of 10% day−1. Local OHC depletion is the leading contributor to anomalous MSE amplification with average rates of 12% day−1. Along the equator, MSE is amplified by OHC vertical advection. Ocean forcing only weakly reduces the propagation tendency of MSE anomalies (−2% day−1), with propagation predominantly resulting from atmosphere forcing (10% day−1). OHC in the IO acts as an MSE reservoir that is expended during periods of enhanced intraseasonal atmosphere convection and recharged during periods of suppressed convection. Because OHC is an MSE source during enhanced intraseasonal convection periods, it largely offsets the negative MSE tendency produced by horizontal advection in the atmosphere. The opposite effect occurs during suppressed convection periods, where OHC is a sink of MSE and counters the positive MSE tendency produced by horizontal advection in the atmosphere.