Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Marion Maturilli x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Kerstin Ebell
,
Tatiana Nomokonova
,
Marion Maturilli
, and
Christoph Ritter

Abstract

For the first time, the cloud radiative effect (CRE) has been characterized for the Arctic site Ny-Ålesund, Svalbard, Norway, including more than 2 years of data (June 2016–September 2018). The cloud radiative effect, that is, the difference between the all-sky and equivalent clear-sky net radiative fluxes, has been derived based on a combination of ground-based remote sensing observations of cloud properties and the application of broadband radiative transfer simulations. The simulated fluxes have been evaluated in terms of a radiative closure study. Good agreement with observed surface net shortwave (SW) and longwave (LW) fluxes has been found, with small biases for clear-sky (SW: 3.8 W m−2; LW: −4.9 W m−2) and all-sky (SW: −5.4 W m−2; LW: −0.2 W m−2) situations. For monthly averages, uncertainties in the CRE are estimated to be small (~2 W m−2). At Ny-Ålesund, the monthly net surface CRE is positive from September to April/May and negative in summer. The annual surface warming effect by clouds is 11.1 W m−2. The longwave surface CRE of liquid-containing cloud is mainly driven by liquid water path (LWP) with an asymptote value of 75 W m−2 for large LWP values. The shortwave surface CRE can largely be explained by LWP, solar zenith angle, and surface albedo. Liquid-containing clouds (LWP > 5 g m−2) clearly contribute most to the shortwave surface CRE (70%–98%) and, from late spring to autumn, also to the longwave surface CRE (up to 95%). Only in winter are ice clouds (IWP > 0 g m−2; LWP < 5 g m−2) equally important or even dominating the signal in the longwave surface CRE.

Open access
Carmen Cordoba-Jabonero
,
Manuel Gil
,
Margarita Yela
,
Marion Maturilli
, and
Roland Neuber

Abstract

The potential of a new improved version of micropulse lidar (MPL-4) on polar stratospheric cloud (PSC) detection is evaluated in the Arctic over Ny-Ålesund (79°N, 12°E), Norway. The campaign took place from January to February 2007 in the frame of the International Polar Year (IPY) activities. Collocated Alfred Wegener Institute (AWI) Koldewey Aerosol Raman Lidar (KARL) devoted to long-term Arctic PSC monitoring is used for validation purposes. PSC detection is based on lidar retrievals of both backscattering ratio R and volume depolarization ratio δV . Two episodes were unequivocally attributed to PSCs: 21–22 January and 5–6 February 2007, showing a good correlation between MPL-4 and KARL backscattering ratio datasets (mean correlation coefficient = 0.92 ± 0.03). PSC layered structures were characterized for four observational periods coincident with KARL measurements. Also, PSC type classification was determined depending on the retrieved R and δV values as compared with those obtained by KARL long-term Arctic PSC measurements. Tropospheric cloud cover from lidar observations and both ECMWF potential vorticity and temperature at 475 K, in addition to temperature profiles from AWI daily radiosoundings, are also reported. Height-resolved and temporal evolution of both PSC episodes obtained from MPL-4 measurements clearly show that MPL-4 is a suitable instrument to provide long-term PSC statistic monitoring in polar regions. These results are the first reported on PSC detection in the Arctic by using a low-energy and highly pulsed lidar operating on autonomous and full-time continuous mode MPL-4.

Full access
Andreas Dörnbrack
,
Sonja Gisinger
,
Michael C. Pitts
,
Lamont R. Poole
, and
Marion Maturilli

Abstract

The presented picture of the month is a superposition of spaceborne lidar observations and high-resolution temperature fields of the ECMWF Integrated Forecast System (IFS). It displays complex tropospheric and stratospheric clouds in the Arctic winter of 2015/16. Near the end of December 2015, the unusual northeastward propagation of warm and humid subtropical air masses as far north as 80°N lifted the tropopause by more than 3 km in 24 h and cooled the stratosphere on a large scale. A widespread formation of thick cirrus clouds near the tropopause and of synoptic-scale polar stratospheric clouds (PSCs) occurred as the temperature dropped below the thresholds for the existence of cloud particles. Additionally, mountain waves were excited by the strong flow at the western edge of the ridge across Svalbard, leading to the formation of mesoscale ice PSCs. The most recent IFS cycle using a horizontal resolution of 8 km globally reproduces the large-scale and mesoscale flow features and leads to a remarkable agreement with the wave structure revealed by the spaceborne observations.

Full access
Kjetil Schanke Aas
,
Terje Koren Berntsen
,
Julia Boike
,
Bernd Etzelmüller
,
Jón Egill Kristjánsson
,
Marion Maturilli
,
Thomas Vikhamar Schuler
,
Frode Stordal
, and
Sebastian Westermann

Abstract

The surface energy balance at the Svalbard Archipelago has been simulated at high resolution with the Weather Research and Forecasting Model and compared with measurements of the individual energy fluxes from a tundra site near Ny-Ålesund (located north of Norway), as well as other near-surface measurements across the region. For surface air temperature, a good agreement between model and observations was found at all locations. High correlations were also found for daily averaged surface energy fluxes within the different seasons at the main site. The four radiation components showed correlations above 0.5 in all seasons (mostly above 0.9), whereas correlations between 0.3 and 0.8 were found for the sensible and latent heat fluxes. Underestimation of cloud cover and cloud optical thickness led to seasonal biases in incoming shortwave and longwave radiation of up to 30%. During summer, this was mainly a result of distinct days on which the model erroneously simulated cloud-free conditions, whereas the incoming radiation biases appeared to be more related to underestimation of cloud optical thickness during winter. The model overestimated both sensible and latent heat fluxes in most seasons. The model also initially overestimated the average Bowen ratio during summer by a factor of 6, but this bias was greatly reduced with two physically based model modifications that are related to frozen-ground hydrology. The seasonally averaged ground/snow heat flux was mostly in agreement with observations but showed too little short-time variability in the presence of thick snow. Overall, the model reproduced average temperatures well but overestimated diurnal cycles and showed considerable biases in the individual energy fluxes on seasonal and shorter time scales.

Full access
Manfred Wendisch
,
Andreas Macke
,
André Ehrlich
,
Christof Lüpkes
,
Mario Mech
,
Dmitry Chechin
,
Klaus Dethloff
,
Carola Barrientos Velasco
,
Heiko Bozem
,
Marlen Brückner
,
Hans-Christian Clemen
,
Susanne Crewell
,
Tobias Donth
,
Regis Dupuy
,
Kerstin Ebell
,
Ulrike Egerer
,
Ronny Engelmann
,
Christa Engler
,
Oliver Eppers
,
Martin Gehrmann
,
Xianda Gong
,
Matthias Gottschalk
,
Christophe Gourbeyre
,
Hannes Griesche
,
Jörg Hartmann
,
Markus Hartmann
,
Bernd Heinold
,
Andreas Herber
,
Hartmut Herrmann
,
Georg Heygster
,
Peter Hoor
,
Soheila Jafariserajehlou
,
Evelyn Jäkel
,
Emma Järvinen
,
Olivier Jourdan
,
Udo Kästner
,
Simonas Kecorius
,
Erlend M. Knudsen
,
Franziska Köllner
,
Jan Kretzschmar
,
Luca Lelli
,
Delphine Leroy
,
Marion Maturilli
,
Linlu Mei
,
Stephan Mertes
,
Guillaume Mioche
,
Roland Neuber
,
Marcel Nicolaus
,
Tatiana Nomokonova
,
Justus Notholt
,
Mathias Palm
,
Manuela van Pinxteren
,
Johannes Quaas
,
Philipp Richter
,
Elena Ruiz-Donoso
,
Michael Schäfer
,
Katja Schmieder
,
Martin Schnaiter
,
Johannes Schneider
,
Alfons Schwarzenböck
,
Patric Seifert
,
Matthew D. Shupe
,
Holger Siebert
,
Gunnar Spreen
,
Johannes Stapf
,
Frank Stratmann
,
Teresa Vogl
,
André Welti
,
Heike Wex
,
Alfred Wiedensohler
,
Marco Zanatta
, and
Sebastian Zeppenfeld

Abstract

Clouds play an important role in Arctic amplification. This term represents the recently observed enhanced warming of the Arctic relative to the global increase of near-surface air temperature. However, there are still important knowledge gaps regarding the interplay between Arctic clouds and aerosol particles, and surface properties, as well as turbulent and radiative fluxes that inhibit accurate model simulations of clouds in the Arctic climate system. In an attempt to resolve this so-called Arctic cloud puzzle, two comprehensive and closely coordinated field studies were conducted: the Arctic Cloud Observations Using Airborne Measurements during Polar Day (ACLOUD) aircraft campaign and the Physical Feedbacks of Arctic Boundary Layer, Sea Ice, Cloud and Aerosol (PASCAL) ice breaker expedition. Both observational studies were performed in the framework of the German Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC) 3 project. They took place in the vicinity of Svalbard, Norway, in May and June 2017. ACLOUD and PASCAL explored four pieces of the Arctic cloud puzzle: cloud properties, aerosol impact on clouds, atmospheric radiation, and turbulent dynamical processes. The two instrumented Polar 5 and Polar 6 aircraft; the icebreaker Research Vessel (R/V) Polarstern; an ice floe camp including an instrumented tethered balloon; and the permanent ground-based measurement station at Ny-Ålesund, Svalbard, were employed to observe Arctic low- and mid-level mixed-phase clouds and to investigate related atmospheric and surface processes. The Polar 5 aircraft served as a remote sensing observatory examining the clouds from above by downward-looking sensors; the Polar 6 aircraft operated as a flying in situ measurement laboratory sampling inside and below the clouds. Most of the collocated Polar 5/6 flights were conducted either above the R/V Polarstern or over the Ny-Ålesund station, both of which monitored the clouds from below using similar but upward-looking remote sensing techniques as the Polar 5 aircraft. Several of the flights were carried out underneath collocated satellite tracks. The paper motivates the scientific objectives of the ACLOUD/PASCAL observations and describes the measured quantities, retrieved parameters, and the applied complementary instrumentation. Furthermore, it discusses selected measurement results and poses critical research questions to be answered in future papers analyzing the data from the two field campaigns.

Open access
Taneil Uttal
,
Sandra Starkweather
,
James R. Drummond
,
Timo Vihma
,
Alexander P. Makshtas
,
Lisa S. Darby
,
John F. Burkhart
,
Christopher J. Cox
,
Lauren N. Schmeisser
,
Thomas Haiden
,
Marion Maturilli
,
Matthew D. Shupe
,
Gijs De Boer
,
Auromeet Saha
,
Andrey A. Grachev
,
Sara M. Crepinsek
,
Lori Bruhwiler
,
Barry Goodison
,
Bruce McArthur
,
Von P. Walden
,
Edward J. Dlugokencky
,
P. Ola G. Persson
,
Glen Lesins
,
Tuomas Laurila
,
John A. Ogren
,
Robert Stone
,
Charles N. Long
,
Sangeeta Sharma
,
Andreas Massling
,
David D. Turner
,
Diane M. Stanitski
,
Eija Asmi
,
Mika Aurela
,
Henrik Skov
,
Konstantinos Eleftheriadis
,
Aki Virkkula
,
Andrew Platt
,
Eirik J. Førland
,
Yoshihiro Iijima
,
Ingeborg E. Nielsen
,
Michael H. Bergin
,
Lauren Candlish
,
Nikita S. Zimov
,
Sergey A. Zimov
,
Norman T. O’Neill
,
Pierre F. Fogal
,
Rigel Kivi
,
Elena A. Konopleva-Akish
,
Johannes Verlinde
,
Vasily Y. Kustov
,
Brian Vasel
,
Viktor M. Ivakhov
,
Yrjö Viisanen
, and
Janet M. Intrieri

Abstract

International Arctic Systems for Observing the Atmosphere (IASOA) activities and partnerships were initiated as a part of the 2007–09 International Polar Year (IPY) and are expected to continue for many decades as a legacy program. The IASOA focus is on coordinating intensive measurements of the Arctic atmosphere collected in the United States, Canada, Russia, Norway, Finland, and Greenland to create synthesis science that leads to an understanding of why and not just how the Arctic atmosphere is evolving. The IASOA premise is that there are limitations with Arctic modeling and satellite observations that can only be addressed with boots-on-the-ground, in situ observations and that the potential of combining individual station and network measurements into an integrated observing system is tremendous. The IASOA vision is that by further integrating with other network observing programs focusing on hydrology, glaciology, oceanography, terrestrial, and biological systems it will be possible to understand the mechanisms of the entire Arctic system, perhaps well enough for humans to mitigate undesirable variations and adapt to inevitable change.

Full access