Search Results
You are looking at 1 - 10 of 29 items for
- Author or Editor: Marshall Shepherd x
- Refine by Access: Content accessible to me x
Abstract
Diem et al. have responded with critical comments as to whether urbanization-enhanced precipitation is maximized in the south-southeast of Atlanta, Georgia, as was recently documented by Shepherd et al. The reply herein offers both general and specific responses to the issues raised by Diem et al.
Abstract
Diem et al. have responded with critical comments as to whether urbanization-enhanced precipitation is maximized in the south-southeast of Atlanta, Georgia, as was recently documented by Shepherd et al. The reply herein offers both general and specific responses to the issues raised by Diem et al.
Abstract
In October 2010, the water level upstream of the Three Gorges Dam (TGD) reached the designated 175-m level. The associated inundation and land use–land cover changes have important implications for water resource management, agriculture, ecosystems, and the hydroclimate. Ultimately, it is important to quantify whether the dam-related changes have altered precipitation patterns. Since rain gauges are limited in the region, satellite-based methods are viable. This study is the first to validate NASA Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) data from 1998 to 2009 using 34 national meteorological rain gauges in the Three Gorges region. Areal average satellite estimates are first verified with areal average rain gauge data both annually and seasonally. Then based on empirical orthogonal functions, the study area is divided into two subregions, and similar validation procedures are performed for both subregions. TMPA data are found to have high correlations with rain gauge data for the whole study area, and correlations for the subregions are only slightly lower. The seasonal analysis yields the lowest correlations for winter. Compared with the gauge data, rainfall is slightly overestimated by about 3 mm month−1. At daily scale, satellite data show good agreement with gauge data for all rain intensity categories except light rain (<1 mm day−1). Spatially, the point-source gauge data are gridded using Thiessen polygons for comparison with satellite data, and the results suggest the satellite-based product may overestimate rainfall in mountainous areas near the reservoir, especially in spring and summer. Overall, the validation results yield strong statistical support for applying satellite rainfall data for hydroclimate studies in this region.
Abstract
In October 2010, the water level upstream of the Three Gorges Dam (TGD) reached the designated 175-m level. The associated inundation and land use–land cover changes have important implications for water resource management, agriculture, ecosystems, and the hydroclimate. Ultimately, it is important to quantify whether the dam-related changes have altered precipitation patterns. Since rain gauges are limited in the region, satellite-based methods are viable. This study is the first to validate NASA Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) data from 1998 to 2009 using 34 national meteorological rain gauges in the Three Gorges region. Areal average satellite estimates are first verified with areal average rain gauge data both annually and seasonally. Then based on empirical orthogonal functions, the study area is divided into two subregions, and similar validation procedures are performed for both subregions. TMPA data are found to have high correlations with rain gauge data for the whole study area, and correlations for the subregions are only slightly lower. The seasonal analysis yields the lowest correlations for winter. Compared with the gauge data, rainfall is slightly overestimated by about 3 mm month−1. At daily scale, satellite data show good agreement with gauge data for all rain intensity categories except light rain (<1 mm day−1). Spatially, the point-source gauge data are gridded using Thiessen polygons for comparison with satellite data, and the results suggest the satellite-based product may overestimate rainfall in mountainous areas near the reservoir, especially in spring and summer. Overall, the validation results yield strong statistical support for applying satellite rainfall data for hydroclimate studies in this region.
Abstract
Precipitation is a key link in the global water cycle and a proxy for changing climate; therefore, proper assessment of the urban environment’s impact on precipitation (land use, aerosols, thermal properties) will be increasingly important in ongoing climate diagnostics and prediction, Global Water and Energy Cycle (GWEC) analysis and modeling, weather forecasting, freshwater resource management, urban planning–design, and land–atmosphere–ocean interface processes. These facts are particularly critical if current projections for global urban growth are accurate.
The goal of this paper is to provide a concise review of recent (1990–present) studies related to how the urban environment affects precipitation. In addition to providing a synopsis of current work, recent findings are placed in context with historical investigations such as Metropolitan Meteorological Experiment (METROMEX) studies. Both observational and modeling studies of urban-induced rainfall are discussed. Additionally, a discussion of the relative roles of urban dynamic and microphysical (e.g., aerosol) processes is presented. The paper closes with a set of recommendations for what observations and capabilities are needed in the future to advance our understanding of the processes.
Abstract
Precipitation is a key link in the global water cycle and a proxy for changing climate; therefore, proper assessment of the urban environment’s impact on precipitation (land use, aerosols, thermal properties) will be increasingly important in ongoing climate diagnostics and prediction, Global Water and Energy Cycle (GWEC) analysis and modeling, weather forecasting, freshwater resource management, urban planning–design, and land–atmosphere–ocean interface processes. These facts are particularly critical if current projections for global urban growth are accurate.
The goal of this paper is to provide a concise review of recent (1990–present) studies related to how the urban environment affects precipitation. In addition to providing a synopsis of current work, recent findings are placed in context with historical investigations such as Metropolitan Meteorological Experiment (METROMEX) studies. Both observational and modeling studies of urban-induced rainfall are discussed. Additionally, a discussion of the relative roles of urban dynamic and microphysical (e.g., aerosol) processes is presented. The paper closes with a set of recommendations for what observations and capabilities are needed in the future to advance our understanding of the processes.
Abstract
This study used 9 yr (1998–2006) of warm-season (June–September) mean daily cumulative rainfall data from both the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis and rain gauge stations to examine spatial variability in warm-season rainfall events around Oklahoma City (OKC). It was hypothesized that with warm-season rainfall variability, under weakly forced conditions, a rainfall anomaly would be present in climatological downwind areas of OKC. Results from both satellite and gauge-based analyses revealed that the north-northeastern (NNE) regions of the metropolitan OKC area were statistically wetter than other regions. Climatological sounding and reanalysis data revealed that, on average, the NNE area of OKC was the climatologically downwind region, confirming that precipitation modification by the urban environment may be more dominant than agricultural/topographic influences on weakly forced days. The study also established that satellite precipitation estimates capture spatial rainfall variability as well as traditional ground-based resources do. TRMM products slightly underestimate the precipitation recorded by gauges, but the correlation R improves dramatically when the analysis is restricted to mean daily rainfall estimates from OKC urban grid cells containing multiple gauge stations (R 2 = 0.878). It was also quantitatively confirmed, using a relatively new concentration factor analysis, that prevailing wind–rainfall yields were consistent with the overall framework of an urban rainfall effect. Overall, the study establishes a prototype method for utilizing satellite-based rainfall estimates to examine rainfall modification by urbanization on global scales and in parts of the world that are not well instrumented with rain gauge or radar networks.
Abstract
This study used 9 yr (1998–2006) of warm-season (June–September) mean daily cumulative rainfall data from both the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis and rain gauge stations to examine spatial variability in warm-season rainfall events around Oklahoma City (OKC). It was hypothesized that with warm-season rainfall variability, under weakly forced conditions, a rainfall anomaly would be present in climatological downwind areas of OKC. Results from both satellite and gauge-based analyses revealed that the north-northeastern (NNE) regions of the metropolitan OKC area were statistically wetter than other regions. Climatological sounding and reanalysis data revealed that, on average, the NNE area of OKC was the climatologically downwind region, confirming that precipitation modification by the urban environment may be more dominant than agricultural/topographic influences on weakly forced days. The study also established that satellite precipitation estimates capture spatial rainfall variability as well as traditional ground-based resources do. TRMM products slightly underestimate the precipitation recorded by gauges, but the correlation R improves dramatically when the analysis is restricted to mean daily rainfall estimates from OKC urban grid cells containing multiple gauge stations (R 2 = 0.878). It was also quantitatively confirmed, using a relatively new concentration factor analysis, that prevailing wind–rainfall yields were consistent with the overall framework of an urban rainfall effect. Overall, the study establishes a prototype method for utilizing satellite-based rainfall estimates to examine rainfall modification by urbanization on global scales and in parts of the world that are not well instrumented with rain gauge or radar networks.
Abstract
There is increasing evidence that large coastal cities, like Houston, Texas, can influence weather through complex urban land use–weather–climate feedbacks. Recent work in the literature establishes the existence of enhanced lightning activity over and downwind of Houston. Since lightning is a signature of convection in the atmosphere, it would seem reasonable that urbanized Houston would also impact the distribution of rainfall. This paper presents results using data from the world’s first satellite-based precipitation radar (PR) aboard the Tropical Rainfall Measuring Mission (TRMM) and ground-based rain gauges to quantify rainfall anomalies that we hypothesize to be linked to extensive urbanization in the Houston area. It is one of the first rigorous efforts to quantify an urban-induced rainfall anomaly near a major U.S. coastal city and one of the first applications of space-borne radar data to the problem. Quantitative results reveal the presence of annual and warm season rainfall anomalies over and downwind of Houston. Several hypotheses have surfaced to explain how the sea breeze, coastline curvature, or urbanized Houston environment interacts with the atmospheric system to impact rainfall. This paper presents evidence that the urban heat island’s influence is of primary significance in causing the observed precipitation anomalies. Precipitation is a key link in the global water cycle and a proper understanding of its temporal and spatial character will have broad implications in ongoing climate diagnostics and prediction, Global Water and Energy Cycle (GWEC) analysis and modeling, weather forecasting, freshwater resource management, and land–atmosphere–ocean interface processes.
Abstract
There is increasing evidence that large coastal cities, like Houston, Texas, can influence weather through complex urban land use–weather–climate feedbacks. Recent work in the literature establishes the existence of enhanced lightning activity over and downwind of Houston. Since lightning is a signature of convection in the atmosphere, it would seem reasonable that urbanized Houston would also impact the distribution of rainfall. This paper presents results using data from the world’s first satellite-based precipitation radar (PR) aboard the Tropical Rainfall Measuring Mission (TRMM) and ground-based rain gauges to quantify rainfall anomalies that we hypothesize to be linked to extensive urbanization in the Houston area. It is one of the first rigorous efforts to quantify an urban-induced rainfall anomaly near a major U.S. coastal city and one of the first applications of space-borne radar data to the problem. Quantitative results reveal the presence of annual and warm season rainfall anomalies over and downwind of Houston. Several hypotheses have surfaced to explain how the sea breeze, coastline curvature, or urbanized Houston environment interacts with the atmospheric system to impact rainfall. This paper presents evidence that the urban heat island’s influence is of primary significance in causing the observed precipitation anomalies. Precipitation is a key link in the global water cycle and a proper understanding of its temporal and spatial character will have broad implications in ongoing climate diagnostics and prediction, Global Water and Energy Cycle (GWEC) analysis and modeling, weather forecasting, freshwater resource management, and land–atmosphere–ocean interface processes.
Abstract
The 2009 Atlanta flood was a historic event that resulted in catastrophic damage throughout the metropolitan area. The flood was the product of several hydrometeorological processes, including moist antecedent conditions, ample atmospheric moisture, and mesoscale training. Additionally, previous studies hypothesized that the urban environment of Atlanta altered the location and/or overall quantities of precipitation and runoff that ultimately produced the flood. This hypothesis was quantitatively evaluated by conducting a modeling case study that utilized the Weather Research and Forecasting Model. Two model runs were performed: 1) an urban run designed to accurately depict the flood event and 2) a nonurban simulation where the urban footprint of Atlanta was replaced with natural vegetation. Comparing the output from the two simulations revealed that interactions with the urban environment enhanced the precipitation and runoff associated with the flood. Specifically, the nonurban model underestimated the cumulative precipitation by approximately 100 mm in the area downwind of Atlanta where urban rainfall enhancement was hypothesized. This notable difference was due to the increased surface convergence observed in the urban simulation, which was likely attributable to the enhanced surface roughness and thermal properties of the urban environment. The findings expand upon previous research focused on urban rainfall effects since they demonstrate that urban interactions can influence mesoscale hydrometeorological characteristics during events with prominent synoptic-scale forcing. Finally, from an urban planning perspective, the results highlight a potential two-pronged vulnerability of urban environments to extreme rainfall, as they may enhance both the initial precipitation and subsequent runoff.
Abstract
The 2009 Atlanta flood was a historic event that resulted in catastrophic damage throughout the metropolitan area. The flood was the product of several hydrometeorological processes, including moist antecedent conditions, ample atmospheric moisture, and mesoscale training. Additionally, previous studies hypothesized that the urban environment of Atlanta altered the location and/or overall quantities of precipitation and runoff that ultimately produced the flood. This hypothesis was quantitatively evaluated by conducting a modeling case study that utilized the Weather Research and Forecasting Model. Two model runs were performed: 1) an urban run designed to accurately depict the flood event and 2) a nonurban simulation where the urban footprint of Atlanta was replaced with natural vegetation. Comparing the output from the two simulations revealed that interactions with the urban environment enhanced the precipitation and runoff associated with the flood. Specifically, the nonurban model underestimated the cumulative precipitation by approximately 100 mm in the area downwind of Atlanta where urban rainfall enhancement was hypothesized. This notable difference was due to the increased surface convergence observed in the urban simulation, which was likely attributable to the enhanced surface roughness and thermal properties of the urban environment. The findings expand upon previous research focused on urban rainfall effects since they demonstrate that urban interactions can influence mesoscale hydrometeorological characteristics during events with prominent synoptic-scale forcing. Finally, from an urban planning perspective, the results highlight a potential two-pronged vulnerability of urban environments to extreme rainfall, as they may enhance both the initial precipitation and subsequent runoff.
Abstract
Inflatable bounce houses provide a popular summer activity for children. Injuries such as sprains and fractures are widely acknowledged, but there is less awareness about possible hazards from excessive heat exposure. This study aims to identify whether conditions in the bounce house are more oppressive than ambient conditions on a typical summer day in Athens, Georgia. Results show that maximum air temperatures in the bounce house can reach up to 3.7°C (6.7°F) greater than ambient conditions, and peak heat index values may exceed outdoor conditions by 4.5°C (8.1°F). When considered within the context of the National Weather Service heat index safety categories, the bounce house reached the “danger” level in more than half of the observations, compared with only 7% of observations for ambient conditions. Parents and caregivers should be aware of heat-related hazards in bounce houses and closely monitor children, adjusting or canceling activities as conditions become more oppressive.
Abstract
Inflatable bounce houses provide a popular summer activity for children. Injuries such as sprains and fractures are widely acknowledged, but there is less awareness about possible hazards from excessive heat exposure. This study aims to identify whether conditions in the bounce house are more oppressive than ambient conditions on a typical summer day in Athens, Georgia. Results show that maximum air temperatures in the bounce house can reach up to 3.7°C (6.7°F) greater than ambient conditions, and peak heat index values may exceed outdoor conditions by 4.5°C (8.1°F). When considered within the context of the National Weather Service heat index safety categories, the bounce house reached the “danger” level in more than half of the observations, compared with only 7% of observations for ambient conditions. Parents and caregivers should be aware of heat-related hazards in bounce houses and closely monitor children, adjusting or canceling activities as conditions become more oppressive.
Abstract
Central Florida is the ideal test laboratory for studying convergence zone–induced convection. The region regularly experiences sea-breeze fronts and rainfall-induced outflow boundaries. The focus of this study is convection associated with the commonly occurring convergence zone established by the interaction of the sea-breeze front and an outflow boundary. Previous studies have investigated mechanisms primarily affecting storm initiation by such convergence zones. Few have focused on rainfall morphology, yet these storms contribute a significant amount of precipitation to the annual rainfall budget. Low-level convergence and midtropospheric moisture have been shown to be correlated with rainfall amounts in Florida. Using 2D and 3D numerical simulations, the roles of low-level convergence and midtropospheric moisture in rainfall evolution are examined.
The results indicate that area- and time-averaged, vertical moisture flux (VMF) at the sea-breeze front–outflow convergence zone is directly and linearly proportional to initial condensation rates. A similar relationship exists between VMF and initial rainfall. The VMF, which encompasses depth and magnitude of convergence, is better correlated to initial rainfall production than surface moisture convergence. This extends early observational studies that linked rainfall in Florida to surface moisture convergence. The amount and distribution of midtropospheric moisture affects how much rainfall associated with secondary cells develop. Rainfall amount and efficiency varied significantly over an observable range of relative humidities in the 850–500-mb layer even though rainfall evolution was similar during the initial or “first cell” period. Rainfall variability was attributed to drier midtropospheric environments inhibiting secondary cell development through entrainment effects. Observationally, a 850–500-mb moisture structure exhibits wider variability than lower-level moisture, which is virtually always present in Florida. A likely consequence of the variability in 850–500-mb moisture is a stronger statistical correlation to rainfall as noted in previous observational studies.
The VMF at convergence zones is critical in determining rainfall in the initial stage of development but plays a decreasing role in rainfall evolution as the system matures. The midtropospheric moisture (e.g., environment) plays an increasing role in rainfall evolution as the system matures. This suggests the need to improve measurements of depth and magnitude of convergence and midtropospheric moisture distribution. It also highlights that the influence of the environment needs to be better represented in convective parameterizations of larger-scale models to account for entrainment effects.
Abstract
Central Florida is the ideal test laboratory for studying convergence zone–induced convection. The region regularly experiences sea-breeze fronts and rainfall-induced outflow boundaries. The focus of this study is convection associated with the commonly occurring convergence zone established by the interaction of the sea-breeze front and an outflow boundary. Previous studies have investigated mechanisms primarily affecting storm initiation by such convergence zones. Few have focused on rainfall morphology, yet these storms contribute a significant amount of precipitation to the annual rainfall budget. Low-level convergence and midtropospheric moisture have been shown to be correlated with rainfall amounts in Florida. Using 2D and 3D numerical simulations, the roles of low-level convergence and midtropospheric moisture in rainfall evolution are examined.
The results indicate that area- and time-averaged, vertical moisture flux (VMF) at the sea-breeze front–outflow convergence zone is directly and linearly proportional to initial condensation rates. A similar relationship exists between VMF and initial rainfall. The VMF, which encompasses depth and magnitude of convergence, is better correlated to initial rainfall production than surface moisture convergence. This extends early observational studies that linked rainfall in Florida to surface moisture convergence. The amount and distribution of midtropospheric moisture affects how much rainfall associated with secondary cells develop. Rainfall amount and efficiency varied significantly over an observable range of relative humidities in the 850–500-mb layer even though rainfall evolution was similar during the initial or “first cell” period. Rainfall variability was attributed to drier midtropospheric environments inhibiting secondary cell development through entrainment effects. Observationally, a 850–500-mb moisture structure exhibits wider variability than lower-level moisture, which is virtually always present in Florida. A likely consequence of the variability in 850–500-mb moisture is a stronger statistical correlation to rainfall as noted in previous observational studies.
The VMF at convergence zones is critical in determining rainfall in the initial stage of development but plays a decreasing role in rainfall evolution as the system matures. The midtropospheric moisture (e.g., environment) plays an increasing role in rainfall evolution as the system matures. This suggests the need to improve measurements of depth and magnitude of convergence and midtropospheric moisture distribution. It also highlights that the influence of the environment needs to be better represented in convective parameterizations of larger-scale models to account for entrainment effects.
Abstract
Data from the Tropical Rainfall Measuring Mission (TRMM) satellite's precipitation radar (PR) were employed to identify warm-season rainfall (1998–2000) patterns around Atlanta, Georgia; Montgomery, Alabama; Nashville, Tennessee; and San Antonio, Waco, and Dallas, Texas. Results reveal an average increase of about 28% in monthly rainfall rates within 30–60 km downwind of the metropolis, with a modest increase of 5.6% over the metropolis. Portions of the downwind area exhibit increases as high as 51%. The percentage changes are relative to an upwind control area. It was also found that maximum rainfall rates in the downwind impact area exceeded the mean value in the upwind control area by 48%–116%. The maximum value was generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. Results are consistent with the Metropolitan Meteorological Experiment (METROMEX) studies of St. Louis, Missouri, almost two decades ago and with more recent studies near Atlanta. The study establishes the possibility of utilizing satellite-based rainfall estimates for examining rainfall modification by urban areas on global scales and over longer time periods. Such research has implications for weather forecasting, urban planning, water resource management, and understanding human impact on the environment and climate.
Abstract
Data from the Tropical Rainfall Measuring Mission (TRMM) satellite's precipitation radar (PR) were employed to identify warm-season rainfall (1998–2000) patterns around Atlanta, Georgia; Montgomery, Alabama; Nashville, Tennessee; and San Antonio, Waco, and Dallas, Texas. Results reveal an average increase of about 28% in monthly rainfall rates within 30–60 km downwind of the metropolis, with a modest increase of 5.6% over the metropolis. Portions of the downwind area exhibit increases as high as 51%. The percentage changes are relative to an upwind control area. It was also found that maximum rainfall rates in the downwind impact area exceeded the mean value in the upwind control area by 48%–116%. The maximum value was generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. Results are consistent with the Metropolitan Meteorological Experiment (METROMEX) studies of St. Louis, Missouri, almost two decades ago and with more recent studies near Atlanta. The study establishes the possibility of utilizing satellite-based rainfall estimates for examining rainfall modification by urban areas on global scales and over longer time periods. Such research has implications for weather forecasting, urban planning, water resource management, and understanding human impact on the environment and climate.