Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Martin Schnaiter x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Carl G. Schmitt
,
Martin Schnaiter
,
Andrew J. Heymsfield
,
Ping Yang
,
Edwin Hirst
, and
Aaron Bansemer

Abstract

A reliable understanding of the microphysical properties of ice particles in atmospheric clouds is critical for assessing cloud radiative forcing effects in climate studies. Ice particle microphysical properties such as size, shape, and surface roughness all have substantial effects on the single-scattering characteristics of the particles. A recently developed ice particle probe, the Small Ice Detector-3 (SID-3), measures the two-dimensional near-forward light-scattering patterns of sampled ice particles. These scattering patterns provide a wealth of information for understanding the microphysical and radiative characteristics of ice particles. The SID-3 was operated successfully on 12 aircraft flights during the NASA Midlatitude Airborne Cirrus Properties Experiment (MACPEX) field campaign in April 2011. In this study, SID-3 measurements are used to investigate the frequency of occurrence of a number of ice particle properties observed during MACPEX. Individual scattering patterns (7.5°–23°) are used to infer properties of the observed particles as well as to calculate partial scattering functions (PSFs) for ensembles of particles in the measured size range (~5–100 μm). PSFs are compared to ray-tracing-based phase functions to infer additional properties of the particles. Two quantitative values—halo ratio and steepness ratio—are used to characterize PSFs. The MACPEX dataset suggests that most atmospheric ice particles have rough surfaces or are complex in nature. PSFs calculated for particles that were characterized as having smooth surfaces also appeared to more closely resemble rough crystal PSFs. PSFs measured with SID-3 compare well with those calculated for droxtals with rough surfaces.

Full access
Roland Schön
,
Martin Schnaiter
,
Zbigniew Ulanowski
,
Carl Schmitt
,
Stefan Benz
,
Ottmar Möhler
,
Steffen Vogt
,
Robert Wagner
, and
Ulrich Schurath

Abstract

The imaging unit of the novel cloud particle instrument Particle Habit Imaging and Polar Scattering (PHIPS) probe has been developed to image individual ice particles produced inside a large cloud chamber. The PHIPS produces images of single airborne ice crystals, illuminated with white light of an ultrafast flashlamp, which are captured at a maximum frequency of ∼5 Hz by a charge-coupled device (CCD) camera with microscope optics. The imaging properties of the instrument were characterized by means of crystalline sodium hexafluorosilicate ice analogs, which are stable at room temperature. The optical resolving power of the system is ∼2 μm. By using dedicated algorithms for image processing and analysis, the ice crystal images can be analyzed automatically in terms of size and selected shape parameters. PHIPS has been operated at the cloud simulation chamber facility Aerosol Interaction and Dynamics in the Atmosphere (AIDA) of the Karlsruhe Institute of Technology at different temperatures between −17° and −4°C in order to study the influence of the ambient conditions, that is, temperature and ice saturation ratio, on ice crystal habits. The area-equivalent size distributions deduced from the PHIPS images are compared with the retrieval results from Fourier transform infrared (FTIR) extinction spectroscopy in case of small (<20 μm) and with single particle data from the cloud particle imager in case of larger (>20 μm) ice particles. Good agreement is found for both particle size regimes.

Full access
Megan M. Varcie
,
Troy J. Zaremba
,
Robert M. Rauber
,
Greg M. McFarquhar
,
Joseph A. Finlon
,
Lynn A. McMurdie
,
Alexander Ryzhkov
,
Martin Schnaiter
,
Emma Järvinen
,
Fritz Waitz
,
David J. Delene
,
Michael R. Poellot
,
Matthew L. Walker McLinden
, and
Andrew Janiszeski

Abstract

On 7 February 2020, precipitation within the comma-head region of an extratropical cyclone was sampled remotely and in situ by two research aircraft, providing a vertical cross section of microphysical observations and fine-scale radar measurements. The sampled region was stratified vertically by distinct temperature layers and horizontally into a stratiform region on the west side, and a region of elevated convection on the east side. In the stratiform region, precipitation formed near cloud top as side-plane, polycrystalline, and platelike particles. These habits occurred through cloud depth, implying that the cloud-top region was the primary source of particles. Almost no supercooled water was present. The ice water content within the stratiform region showed an overall increase with depth between the aircraft flight levels, while the total number concentration slightly decreased, consistent with growth by vapor deposition and aggregation. In the convective region, new particle habits were observed within each temperature-defined layer along with detectable amounts of supercooled water, implying that ice particle formation occurred in several layers. Total number concentration decreased from cloud top to the −8°C level, consistent with particle aggregation. At temperatures > −8°C, ice particle concentrations in some regions increased to >100 L−1, suggesting secondary ice production occurred at lower altitudes. WSR-88D reflectivity composites during the sampling period showed a weak, loosely organized banded feature. The band, evident on earlier flight legs, was consistent with enhanced vertical motion associated with frontogenesis, and at least partial melting of ice particles near the surface. A conceptual model of precipitation growth processes within the comma head is presented.

Significance Statement

Snowstorms over the northeast United States have major impacts on travel, power availability, and commerce. The processes by which snow forms in winter storms over this region are complex and their snowfall totals are hard to forecast accurately because of a poor understanding of the microphysical processes within the clouds composing the storms. This paper presents a case study from the NASA IMPACTS field campaign that involved two aircraft sampling the storm simultaneously with radars, and probes that measure the microphysical properties within the storm. The paper examines how variations in stability and frontal structure influence the microphysical evolution of ice particles as they fall from cloud top to the surface within the storm.

Open access
Emma Järvinen
,
Martin Schnaiter
,
Guillaume Mioche
,
Olivier Jourdan
,
Valery N. Shcherbakov
,
Anja Costa
,
Armin Afchine
,
Martina Krämer
,
Fabian Heidelberg
,
Tina Jurkat
,
Christiane Voigt
,
Hans Schlager
,
Leonid Nichman
,
Martin Gallagher
,
Edwin Hirst
,
Carl Schmitt
,
Aaron Bansemer
,
Andy Heymsfield
,
Paul Lawson
,
Ugo Tricoli
,
Klaus Pfeilsticker
,
Paul Vochezer
,
Ottmar Möhler
, and
Thomas Leisner

Abstract

Homogeneous freezing of supercooled droplets occurs in convective systems in low and midlatitudes. This droplet-freezing process leads to the formation of a large amount of small ice particles, so-called frozen droplets, that are transported to the upper parts of anvil outflows, where they can influence the cloud radiative properties. However, the detailed microphysics and, thus, the scattering properties of these small ice particles are highly uncertain. Here, the link between the microphysical and optical properties of frozen droplets is investigated in cloud chamber experiments, where the frozen droplets were formed, grown, and sublimated under controlled conditions. It was found that frozen droplets developed a high degree of small-scale complexity after their initial formation and subsequent growth. During sublimation, the small-scale complexity disappeared, releasing a smooth and near-spherical ice particle. Angular light scattering and depolarization measurements confirmed that these sublimating frozen droplets scattered light similar to spherical particles: that is, they had angular light-scattering properties similar to water droplets. The knowledge gained from this laboratory study was applied to two case studies of aircraft measurements in midlatitude and tropical convective systems. The in situ aircraft measurements confirmed that the microphysics of frozen droplets is dependent on the humidity conditions they are exposed to (growth or sublimation). The existence of optically spherical frozen droplets can be important for the radiative properties of detraining convective outflows.

Full access
Julia Schmale
,
Andrea Baccarini
,
Iris Thurnherr
,
Silvia Henning
,
Avichay Efraim
,
Leighton Regayre
,
Conor Bolas
,
Markus Hartmann
,
André Welti
,
Katrianne Lehtipalo
,
Franziska Aemisegger
,
Christian Tatzelt
,
Sebastian Landwehr
,
Robin L. Modini
,
Fiona Tummon
,
Jill S. Johnson
,
Neil Harris
,
Martin Schnaiter
,
Alessandro Toffoli
,
Marzieh Derkani
,
Nicolas Bukowiecki
,
Frank Stratmann
,
Josef Dommen
,
Urs Baltensperger
,
Heini Wernli
,
Daniel Rosenfeld
,
Martin Gysel-Beer
, and
Ken S. Carslaw

Abstract

Uncertainty in radiative forcing caused by aerosol–cloud interactions is about twice as large as for CO2 and remains the least well understood anthropogenic contribution to climate change. A major cause of uncertainty is the poorly quantified state of aerosols in the pristine preindustrial atmosphere, which defines the baseline against which anthropogenic effects are calculated. The Southern Ocean is one of the few remaining near-pristine aerosol environments on Earth, but there are very few measurements to help evaluate models. The Antarctic Circumnavigation Expedition: Study of Preindustrial-like Aerosols and their Climate Effects (ACE-SPACE) took place between December 2016 and March 2017 and covered the entire Southern Ocean region (Indian, Pacific, and Atlantic Oceans; length of ship track >33,000 km) including previously unexplored areas. In situ measurements covered aerosol characteristics [e.g., chemical composition, size distributions, and cloud condensation nuclei (CCN) number concentrations], trace gases, and meteorological variables. Remote sensing observations of cloud properties, the physical and microbial ocean state, and back trajectory analyses are used to interpret the in situ data. The contribution of sea spray to CCN in the westerly wind belt can be larger than 50%. The abundance of methanesulfonic acid indicates local and regional microbial influence on CCN abundance in Antarctic coastal waters and in the open ocean. We use the in situ data to evaluate simulated CCN concentrations from a global aerosol model. The extensive, available ACE-SPACE dataset (https://zenodo.org/communities/spi-ace?page=1&size=20) provides an unprecedented opportunity to evaluate models and to reduce the uncertainty in radiative forcing associated with the natural processes of aerosol emission, formation, transport, and processing occurring over the pristine Southern Ocean.

Full access
Christiane Voigt
,
Ulrich Schumann
,
Andreas Minikin
,
Ahmed Abdelmonem
,
Armin Afchine
,
Stephan Borrmann
,
Maxi Boettcher
,
Bernhard Buchholz
,
Luca Bugliaro
,
Anja Costa
,
Joachim Curtius
,
Maximilian Dollner
,
Andreas Dörnbrack
,
Volker Dreiling
,
Volker Ebert
,
Andre Ehrlich
,
Andreas Fix
,
Linda Forster
,
Fabian Frank
,
Daniel Fütterer
,
Andreas Giez
,
Kaspar Graf
,
Jens-Uwe Grooß
,
Silke Groß
,
Katharina Heimerl
,
Bernd Heinold
,
Tilman Hüneke
,
Emma Järvinen
,
Tina Jurkat
,
Stefan Kaufmann
,
Mareike Kenntner
,
Marcus Klingebiel
,
Thomas Klimach
,
Rebecca Kohl
,
Martina Krämer
,
Trismono Candra Krisna
,
Anna Luebke
,
Bernhard Mayer
,
Stephan Mertes
,
Sergej Molleker
,
Andreas Petzold
,
Klaus Pfeilsticker
,
Max Port
,
Markus Rapp
,
Philipp Reutter
,
Christian Rolf
,
Diana Rose
,
Daniel Sauer
,
Andreas Schäfler
,
Romy Schlage
,
Martin Schnaiter
,
Johannes Schneider
,
Nicole Spelten
,
Peter Spichtinger
,
Paul Stock
,
Adrian Walser
,
Ralf Weigel
,
Bernadett Weinzierl
,
Manfred Wendisch
,
Frank Werner
,
Heini Wernli
,
Martin Wirth
,
Andreas Zahn
,
Helmut Ziereis
, and
Martin Zöger

Abstract

The Midlatitude Cirrus experiment (ML-CIRRUS) deployed the High Altitude and Long Range Research Aircraft (HALO) to obtain new insights into nucleation, life cycle, and climate impact of natural cirrus and aircraft-induced contrail cirrus. Direct observations of cirrus properties and their variability are still incomplete, currently limiting our understanding of the clouds’ impact on climate. Also, dynamical effects on clouds and feedbacks are not adequately represented in today’s weather prediction models.

Here, we present the rationale, objectives, and selected scientific highlights of ML-CIRRUS using the G-550 aircraft of the German atmospheric science community. The first combined in situ–remote sensing cloud mission with HALO united state-of-the-art cloud probes, a lidar and novel ice residual, aerosol, trace gas, and radiation instrumentation. The aircraft observations were accompanied by remote sensing from satellite and ground and by numerical simulations.

In spring 2014, HALO performed 16 flights above Europe with a focus on anthropogenic contrail cirrus and midlatitude cirrus induced by frontal systems including warm conveyor belts and other dynamical regimes (jet streams, mountain waves, and convection). Highlights from ML-CIRRUS include 1) new observations of microphysical and radiative cirrus properties and their variability in meteorological regimes typical for midlatitudes, 2) insights into occurrence of in situ–formed and lifted liquid-origin cirrus, 3) validation of cloud forecasts and satellite products, 4) assessment of contrail predictability, and 5) direct observations of contrail cirrus and their distinction from natural cirrus. Hence, ML-CIRRUS provides a comprehensive dataset on cirrus in the densely populated European midlatitudes with the scope to enhance our understanding of cirrus clouds and their role for climate and weather.

Full access
Manfred Wendisch
,
Ulrich Pöschl
,
Meinrat O. Andreae
,
Luiz A. T. Machado
,
Rachel Albrecht
,
Hans Schlager
,
Daniel Rosenfeld
,
Scot T. Martin
,
Ahmed Abdelmonem
,
Armin Afchine
,
Alessandro C. Araùjo
,
Paulo Artaxo
,
Heinfried Aufmhoff
,
Henrique M. J. Barbosa
,
Stephan Borrmann
,
Ramon Braga
,
Bernhard Buchholz
,
Micael Amore Cecchini
,
Anja Costa
,
Joachim Curtius
,
Maximilian Dollner
,
Marcel Dorf
,
Volker Dreiling
,
Volker Ebert
,
André Ehrlich
,
Florian Ewald
,
Gilberto Fisch
,
Andreas Fix
,
Fabian Frank
,
Daniel Fütterer
,
Christopher Heckl
,
Fabian Heidelberg
,
Tilman Hüneke
,
Evelyn Jäkel
,
Emma Järvinen
,
Tina Jurkat
,
Sandra Kanter
,
Udo Kästner
,
Mareike Kenntner
,
Jürgen Kesselmeier
,
Thomas Klimach
,
Matthias Knecht
,
Rebecca Kohl
,
Tobias Kölling
,
Martina Krämer
,
Mira Krüger
,
Trismono Candra Krisna
,
Jost V. Lavric
,
Karla Longo
,
Christoph Mahnke
,
Antonio O. Manzi
,
Bernhard Mayer
,
Stephan Mertes
,
Andreas Minikin
,
Sergej Molleker
,
Steffen Münch
,
Björn Nillius
,
Klaus Pfeilsticker
,
Christopher Pöhlker
,
Anke Roiger
,
Diana Rose
,
Dagmar Rosenow
,
Daniel Sauer
,
Martin Schnaiter
,
Johannes Schneider
,
Christiane Schulz
,
Rodrigo A. F. de Souza
,
Antonio Spanu
,
Paul Stock
,
Daniel Vila
,
Christiane Voigt
,
Adrian Walser
,
David Walter
,
Ralf Weigel
,
Bernadett Weinzierl
,
Frank Werner
,
Marcia A. Yamasoe
,
Helmut Ziereis
,
Tobias Zinner
, and
Martin Zöger

Abstract

Between 1 September and 4 October 2014, a combined airborne and ground-based measurement campaign was conducted to study tropical deep convective clouds over the Brazilian Amazon rain forest. The new German research aircraft, High Altitude and Long Range Research Aircraft (HALO), a modified Gulfstream G550, and extensive ground-based instrumentation were deployed in and near Manaus (State of Amazonas). The campaign was part of the German–Brazilian Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems–Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement) (ACRIDICON– CHUVA) venture to quantify aerosol–cloud–precipitation interactions and their thermodynamic, dynamic, and radiative effects by in situ and remote sensing measurements over Amazonia. The ACRIDICON–CHUVA field observations were carried out in cooperation with the second intensive operating period of Green Ocean Amazon 2014/15 (GoAmazon2014/5). In this paper we focus on the airborne data measured on HALO, which was equipped with about 30 in situ and remote sensing instruments for meteorological, trace gas, aerosol, cloud, precipitation, and spectral solar radiation measurements. Fourteen research flights with a total duration of 96 flight hours were performed. Five scientific topics were pursued: 1) cloud vertical evolution and life cycle (cloud profiling), 2) cloud processing of aerosol particles and trace gases (inflow and outflow), 3) satellite and radar validation (cloud products), 4) vertical transport and mixing (tracer experiment), and 5) cloud formation over forested/deforested areas. Data were collected in near-pristine atmospheric conditions and in environments polluted by biomass burning and urban emissions. The paper presents a general introduction of the ACRIDICON– CHUVA campaign (motivation and addressed research topics) and of HALO with its extensive instrument package, as well as a presentation of a few selected measurement results acquired during the flights for some selected scientific topics.

Full access
Manfred Wendisch
,
Andreas Macke
,
André Ehrlich
,
Christof Lüpkes
,
Mario Mech
,
Dmitry Chechin
,
Klaus Dethloff
,
Carola Barrientos Velasco
,
Heiko Bozem
,
Marlen Brückner
,
Hans-Christian Clemen
,
Susanne Crewell
,
Tobias Donth
,
Regis Dupuy
,
Kerstin Ebell
,
Ulrike Egerer
,
Ronny Engelmann
,
Christa Engler
,
Oliver Eppers
,
Martin Gehrmann
,
Xianda Gong
,
Matthias Gottschalk
,
Christophe Gourbeyre
,
Hannes Griesche
,
Jörg Hartmann
,
Markus Hartmann
,
Bernd Heinold
,
Andreas Herber
,
Hartmut Herrmann
,
Georg Heygster
,
Peter Hoor
,
Soheila Jafariserajehlou
,
Evelyn Jäkel
,
Emma Järvinen
,
Olivier Jourdan
,
Udo Kästner
,
Simonas Kecorius
,
Erlend M. Knudsen
,
Franziska Köllner
,
Jan Kretzschmar
,
Luca Lelli
,
Delphine Leroy
,
Marion Maturilli
,
Linlu Mei
,
Stephan Mertes
,
Guillaume Mioche
,
Roland Neuber
,
Marcel Nicolaus
,
Tatiana Nomokonova
,
Justus Notholt
,
Mathias Palm
,
Manuela van Pinxteren
,
Johannes Quaas
,
Philipp Richter
,
Elena Ruiz-Donoso
,
Michael Schäfer
,
Katja Schmieder
,
Martin Schnaiter
,
Johannes Schneider
,
Alfons Schwarzenböck
,
Patric Seifert
,
Matthew D. Shupe
,
Holger Siebert
,
Gunnar Spreen
,
Johannes Stapf
,
Frank Stratmann
,
Teresa Vogl
,
André Welti
,
Heike Wex
,
Alfred Wiedensohler
,
Marco Zanatta
, and
Sebastian Zeppenfeld

Abstract

Clouds play an important role in Arctic amplification. This term represents the recently observed enhanced warming of the Arctic relative to the global increase of near-surface air temperature. However, there are still important knowledge gaps regarding the interplay between Arctic clouds and aerosol particles, and surface properties, as well as turbulent and radiative fluxes that inhibit accurate model simulations of clouds in the Arctic climate system. In an attempt to resolve this so-called Arctic cloud puzzle, two comprehensive and closely coordinated field studies were conducted: the Arctic Cloud Observations Using Airborne Measurements during Polar Day (ACLOUD) aircraft campaign and the Physical Feedbacks of Arctic Boundary Layer, Sea Ice, Cloud and Aerosol (PASCAL) ice breaker expedition. Both observational studies were performed in the framework of the German Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC) project. They took place in the vicinity of Svalbard, Norway, in May and June 2017. ACLOUD and PASCAL explored four pieces of the Arctic cloud puzzle: cloud properties, aerosol impact on clouds, atmospheric radiation, and turbulent dynamical processes. The two instrumented Polar 5 and Polar 6 aircraft; the icebreaker Research Vessel (R/V) Polarstern; an ice floe camp including an instrumented tethered balloon; and the permanent ground-based measurement station at Ny-Ålesund, Svalbard, were employed to observe Arctic low- and mid-level mixed-phase clouds and to investigate related atmospheric and surface processes. The Polar 5 aircraft served as a remote sensing observatory examining the clouds from above by downward-looking sensors; the Polar 6 aircraft operated as a flying in situ measurement laboratory sampling inside and below the clouds. Most of the collocated Polar 5/6 flights were conducted either above the R/V Polarstern or over the Ny-Ålesund station, both of which monitored the clouds from below using similar but upward-looking remote sensing techniques as the Polar 5 aircraft. Several of the flights were carried out underneath collocated satellite tracks. The paper motivates the scientific objectives of the ACLOUD/PASCAL observations and describes the measured quantities, retrieved parameters, and the applied complementary instrumentation. Furthermore, it discusses selected measurement results and poses critical research questions to be answered in future papers analyzing the data from the two field campaigns.

Open access
Greg M. McFarquhar
,
Christopher S. Bretherton
,
Roger Marchand
,
Alain Protat
,
Paul J. DeMott
,
Simon P. Alexander
,
Greg C. Roberts
,
Cynthia H. Twohy
,
Darin Toohey
,
Steve Siems
,
Yi Huang
,
Robert Wood
,
Robert M. Rauber
,
Sonia Lasher-Trapp
,
Jorgen Jensen
,
Jeffrey L. Stith
,
Jay Mace
,
Junshik Um
,
Emma Järvinen
,
Martin Schnaiter
,
Andrew Gettelman
,
Kevin J. Sanchez
,
Christina S. McCluskey
,
Lynn M. Russell
,
Isabel L. McCoy
,
Rachel L. Atlas
,
Charles G. Bardeen
,
Kathryn A. Moore
,
Thomas C. J. Hill
,
Ruhi S. Humphries
,
Melita D. Keywood
,
Zoran Ristovski
,
Luke Cravigan
,
Robyn Schofield
,
Chris Fairall
,
Marc D. Mallet
,
Sonia M. Kreidenweis
,
Bryan Rainwater
,
John D’Alessandro
,
Yang Wang
,
Wei Wu
,
Georges Saliba
,
Ezra J. T. Levin
,
Saisai Ding
,
Francisco Lang
,
Son C. H. Truong
,
Cory Wolff
,
Julie Haggerty
,
Mike J. Harvey
,
Andrew R. Klekociuk
, and
Adrian McDonald

Abstract

Weather and climate models are challenged by uncertainties and biases in simulating Southern Ocean (SO) radiative fluxes that trace to a poor understanding of cloud, aerosol, precipitation, and radiative processes, and their interactions. Projects between 2016 and 2018 used in situ probes, radar, lidar, and other instruments to make comprehensive measurements of thermodynamics, surface radiation, cloud, precipitation, aerosol, cloud condensation nuclei (CCN), and ice nucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase clouds common to this pristine environment. Data including soundings were collected from the NSF–NCAR G-V aircraft flying north–south gradients south of Tasmania, at Macquarie Island, and on the R/V Investigator and RSV Aurora Australis. Synergistically these data characterize boundary layer and free troposphere environmental properties, and represent the most comprehensive data of this type available south of the oceanic polar front, in the cold sector of SO cyclones, and across seasons. Results show largely pristine environments with numerous small and few large aerosols above cloud, suggesting new particle formation and limited long-range transport from continents, high variability in CCN and cloud droplet concentrations, and ubiquitous supercooled water in thin, multilayered clouds, often with small-scale generating cells near cloud top. These observations demonstrate how cloud properties depend on aerosols while highlighting the importance of dynamics and turbulence that likely drive heterogeneity of cloud phase. Satellite retrievals confirmed low clouds were responsible for radiation biases. The combination of models and observations is examining how aerosols and meteorology couple to control SO water and energy budgets.

Full access