Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Matthew J. Menne x
  • Artificial Intelligence for the Earth Systems x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Boyin Huang
,
Xungang Yin
,
Matthew J. Menne
,
Russell Vose
, and
Huai-Min Zhang

Abstract

NOAA global surface temperature (NOAAGlobalTemp) is NOAA’s operational global surface temperature product, which has been widely used in Earth’s climate assessment and monitoring. To improve the spatial interpolation of monthly land surface air temperatures (LSATs) in NOAAGlobalTemp from 1850 to 2020, a three-layer artificial neural network (ANN) system was designed. The ANN system was trained by repeatedly randomly selecting 90% of the LSATs from ERA5 (1950–2019) and validating with the remaining 10%. Validations show clear improvements of ANN over the original empirical orthogonal teleconnection (EOT) method: the global spatial correlation coefficient (SCC) increases from 65% to 80%, and the global root-mean-square difference (RMSD) decreases from 0.99° to 0.57°C during 1850–2020. The improvements of SCCs and RMSDs are larger in the Southern Hemisphere than in the Northern Hemisphere and are larger before the 1950s and where observations are sparse. The ANN system was finally fed in observed LSATs, and its output over the global land surface was compared with those from the EOT method. Comparisons demonstrate similar improvements by ANN over the EOT method: The global SCC increased from 78% to 89%, the global RMSD decreased from 0.93° to 0.68°C, and the LSAT variability quantified by the monthly standard deviation (STD) increases from 1.16° to 1.41°C during 1850–2020. While the SCC, RMSD, and STD at the monthly time scale have been improved, long-term trends remain largely unchanged because the low-frequency component of LSAT in ANN is identical to that in the EOT approach.

Significance Statement

The spatial interpolation method of an artificial neural network has greatly improved the accuracy of land surface air temperature reconstruction, which reduces root-mean-square error and increases spatial coherence and variabilities over the global land surface from 1850 to 2020.

Free access