Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Matthew J. Menne x
  • Journal of Hydrometeorology x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Alan Basist
,
Claude Williams Jr.
,
Thomas F. Ross
,
Matthew J. Menne
,
Norman Grody
,
Ralph Ferraro
,
Samuel Shen
, and
Alfred T. C. Chang

Abstract

The frequencies flown on the Special Sensor Microwave Imager (SSM/I) are sensitive to liquid water near the earth's surface. These frequencies are primarily atmospheric window channels, which receive the majority of their radiation from the surface. Liquid water near the surface depresses the emissivity as a function of wavelength. The relationship between brightness temperatures at different frequencies is used to dynamically derive the amount of liquid water in each SSM/I observation at 1/3° resolution. These data are averaged at 1° resolution throughout the globe for each month during the period of 1992–97, and the 6-yr monthly means and the monthly anomalies of the wetness index are computed from this base period. To quantify the relationship between precipitation and surface wetness, these anomalies are compared with precipitation anomalies derived from the Global Precipitation Climate Program. The analysis was performed for six agricultural regions across six continents. There is generally a good correspondence between the two variables. The correlation generally increases when the wetness index is compared with precipitation anomalies accumulated over a 2-month period. These results indicate that the wetness index has a strong correspondence to the upper layer of the soil moisture in many cultivated areas of the world. The region in southeastern Australia had the best relationship, with a correlation coefficient of 0.76. The Sahel, France, and Argentina showed that the wetness index had memory of precipitation anomalies from the previous months. The memory is shorter for southeastern Australia and central China. The weakest correlations occurred over the southeastern United States, where the surface is covered by dense vegetation. The unique signal, strengths, and weaknesses of the wetness index in each of the six study regions are discussed.

Full access