Search Results
Abstract
Several tropical cyclone forecasting centers issue uncertainty information with regard to their official track forecasts, generally using the climatological distribution of position error. However, such methods are not able to convey information that depends on the situation. The purpose of the present study is to assess the skill of the Ensemble Prediction System (EPS) from the European Centre for Medium-Range Weather Forecasts (ECMWF) at measuring the uncertainty of up to 3-day track forecasts issued by the Regional Specialized Meteorological Centre (RSMC) La RĂ©union in the southwestern Indian Ocean. The dispersion of cyclone positions in the EPS is extracted and translated at the RSMC forecast position. The verification relies on existing methods for probabilistic forecasts that are presently adapted to a cyclone-position metric. First, the probability distribution of forecast positions is compared to the climatological distribution using Brier scores. The probabilistic forecasts have better scores than the climatology, particularly after applying a simple calibration scheme. Second, uncertainty circles are built by fixing the probability at 75%. Their skill at detecting small and large error values is assessed. The circles have some skill for large errors up to the 3-day forecast (and maybe after); but the detection of small radii is skillful only up to 2-day forecasts. The applied methodology may be used to assess and to compare the skill of different probabilistic forecasting systems of cyclone position.
Abstract
Several tropical cyclone forecasting centers issue uncertainty information with regard to their official track forecasts, generally using the climatological distribution of position error. However, such methods are not able to convey information that depends on the situation. The purpose of the present study is to assess the skill of the Ensemble Prediction System (EPS) from the European Centre for Medium-Range Weather Forecasts (ECMWF) at measuring the uncertainty of up to 3-day track forecasts issued by the Regional Specialized Meteorological Centre (RSMC) La RĂ©union in the southwestern Indian Ocean. The dispersion of cyclone positions in the EPS is extracted and translated at the RSMC forecast position. The verification relies on existing methods for probabilistic forecasts that are presently adapted to a cyclone-position metric. First, the probability distribution of forecast positions is compared to the climatological distribution using Brier scores. The probabilistic forecasts have better scores than the climatology, particularly after applying a simple calibration scheme. Second, uncertainty circles are built by fixing the probability at 75%. Their skill at detecting small and large error values is assessed. The circles have some skill for large errors up to the 3-day forecast (and maybe after); but the detection of small radii is skillful only up to 2-day forecasts. The applied methodology may be used to assess and to compare the skill of different probabilistic forecasting systems of cyclone position.