Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Michael J. Dickinson x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Michael J. Dickinson
and
David J. Knight

Abstract

A two-dimensional, hydrostatic, nearly adiabatic primitive equation model is used to study the evolution of a front passing across topography. Frontogenesis is forced by shearing deformation associated with the nonlinear evolution of an Eady wave. This study extends previous work by including an upper-level potential vorticity (PV) anomaly and a growing baroclinic wave in a baroclinically unstable basic state.

Results for the Eady wave simulations show that the mountain retards and blocks the approaching front at the surface while the upper-level PV anomaly associated with the front moves across the domain unaffected. Warm advection ahead of the lee trough forces convergence and cyclonic vorticity growth near the base of the lee slope. This vorticity growth is further encouraged by the approach of the upper-level PV anomaly. The upper-level PV anomaly then couples with this new surface vorticity center and propagates downstream. The original surface front remains trapped on the windward slope. Thus when the upstream blocking is strong, frontal propagation is discontinuous across the ridge. This evolution occurs for tall mountains and narrow mountains, as well as weak fronts. For low mountains, wide mountains, and strong fronts, only weak retardation is observed on the windward slope. The surface front remains coupled with the upper-level PV anomaly. The front moves continuously across the mountain.

The net result, regardless of mountain size and shape, is that the front reaches the base of the lee slope stronger, sooner, and with a decreased cross-front scale compared to the “no-mountain” case. Well downstream of the mountain, no position change of the surface front is observed.

Full access
Eric D. Maloney
and
Michael J. Dickinson

Abstract

The tropical intraseasonal oscillation (ISO) causes variations in the large-scale flow over the western North Pacific during June–August that strongly impact the energetics of tropical depression (TD)-type disturbances. An energetics analysis is conducted with NCEP–NCAR reanalysis data during June–August of 1979–2001. Composite TD-type disturbance perturbation kinetic energy (PKE) is significantly higher during ISO 850-hPa westerly periods than during ISO 850-hPa easterly periods. ISO westerly periods are associated with enhanced barotropic conversion and enhanced perturbation available potential energy (PAPE) to PKE conversion. ISO easterly periods are characterized by diminished TD-type PKE, negligible barotropic conversion, and weakened PAPE to PKE conversions, as compared to composite TD-type disturbances during ISO westerly periods and the entire June–August record. Barotropic conversion accounts for a larger fraction of the PKE generation during ISO westerly periods than during the entire June–August record, and vertically averaged barotropic conversion during ISO westerly periods is 3–4 times that during ISO easterly periods. Barotropic conversion during ISO westerly periods maximizes in the lower troposphere, coincident with the maximum in TD-type disturbance kinetic energy. PAPE to PKE conversion maximizes in the upper troposphere, where it is redistributed to the lower-troposphere and tropopause levels, and horizontally, by the perturbation geopotential flux. PAPE is primarily generated through convective heating associated with the TD-type disturbances and is converted to PKE through the negative correlation of pressure velocity and temperature.

The effect of western Pacific ISO flow variations on the energy budgets of TD-type disturbances may help explain the ISO-related modulation of tropical cyclones observed by Liebmann et al. Energetic TD-type disturbances during ISO westerly periods may provide suitable seed disturbances from which tropical cyclones may form.

June–August TD-type disturbance structure and energetics (unstratified by ISO phase) were compared to the results of Lau and Lau, who used a different analysis product, lower-resolution dataset, and shorter data record. TD-type disturbance structure and energetics are consistent with those shown in Lau and Lau. The largest deviation in the present analysis from that of Lau and Lau is the strong destruction of PKE found at 150 hPa, a level not resolved in their study. Although the sign of the 150-hPa signal is consistent with southwest–northeast-tilted TD-type disturbances interacting with strongly sheared easterly flow aloft, the nonlinear nature of the energy budget calculations may also amplify the effects of unrelated variability.

Full access