Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Michel Roch x
  • Weather and Forecasting x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Stéphane Bélair
,
Michel Roch
,
Anne-Marie Leduc
,
Paul A. Vaillancourt
,
Stéphane Laroche
, and
Jocelyn Mailhot

Abstract

The Meteorological Service of Canada (MSC) recently implemented a 33-km version of the Global Environmental Multiscale (GEM) model, with improved physics, for medium-range weather forecasts. Quantitative precipitation forecasts (QPFs) from this new system were compared with those from the previous global operational system (100-km grid size) and with those from MSC’s short-range (48 h) regional system (15-km grid size). The evaluation is based on performance measures that evaluate bias, accuracy, and the value of the QPFs.

Results presented in this article consistently show, for these three aspects of the evaluation, that the new global forecast system (GLBNEW) agrees more closely with observations, relative to the performance of the previous global system (GLBOLD). The biases are noticeably smaller with GLBNEW compared with GLBOLD, which severely overpredicts (underpredicts) the frequencies and total amounts associated with weak (strong) precipitation intensities. The accuracy and value scores reveal gains of at least 12 h and even up to 72 h for medium-range QPFs (i.e., day 3 to day 5 predictions). The new global system even performs slightly better than MSC’s operational regional 15-km system for short-range QPFs.

In a more absolute manner, results suggest that QPFs from the new global system may still have accuracy and value even at the medium range. This seems to be true at least for the smallest precipitation threshold, related to precipitation occurrence, for which the positive area under curves of relative economic value remains important, even for day 5 QPFs.

Full access
Natacha B. Bernier
,
Jose-Henrique G. M. Alves
,
Hendrik Tolman
,
Arun Chawla
,
Syd Peel
,
Benoit Pouliot
,
Jean-Marc Bélanger
,
Pierre Pellerin
,
Mario Lépine
, and
Michel Roch

Abstract

A global deterministic wave prediction system (GDWPS) is used to improve regional forecasts of waves off the Canadian coastline and help support the practice of safe marine activities in Canadian waters. The wave model has a grid spacing of ¼° with spectral resolution of 36 frequency bins and 36 directional bins. The wave model is driven with hourly 10-m winds generated by the operational global atmospheric prediction system. Ice conditions are updated every three hours using the ice concentration forecasts generated by the Global Ice–Ocean Prediction System. Wave forecasts are evaluated over two periods from 15 August to 31 October 2014 and from 15 December 2014 to 28 February 2015, as well as over select cases during the fall of 2012. The global system is shown to improve wave forecast skill over regions where forecasts were previously produced using limited-area models only. The usefulness of a global expansion is demonstrated for large swell events affecting the northeast Pacific. The first validation of a Canadian operational wave forecast system in the Arctic is presented. Improvements in the representation of forecast wave fields associated with tropical cyclones are also demonstrated. Finally, the GDWPS is shown to result in gains of at least 12 h of lead time.

Full access