Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Minghua Zhang x
  • Weather and Forecasting x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Hye-Mi Kim
,
Edmund K. M. Chang
, and
Minghua Zhang

Abstract

This study attempts, for the first time, to predict the annual number of tropical cyclones (TCs) affecting New York State (NYS), as part of the effort of the New York State Resiliency Institute for Storms and Emergencies (RISE). A pure statistical prediction model and a statistical–dynamical hybrid prediction model have been developed based on the understanding of the physical mechanism between NYS TCs and associated large-scale climate variability. During the cold phase of El Niño–Southern Oscillation, significant circulation anomalies in the Atlantic Ocean provide favorable conditions for more recurving TCs into NYS. The pure statistical prediction model uses the sea surface temperature (SST) over the equatorial Pacific Ocean from the previous months. Cross validation shows that the correlation between the observed and predicted numbers of NYS TCs is 0.56 for the June 1979–2013 forecasts. Forecasts of the probability of one or more TCs impacting NYS have a Brier skill score of 0.35 compared to climatology. The statistical–dynamical hybrid prediction model uses Climate Forecast System, version 2, SST predictions, which are statistically downscaled to forecast the number of NYS TCs based on a stepwise regression model. Results indicate that the initial seasonal prediction for NYS TCs can be issued in February using the hybrid model, with an update in June using the pure statistical prediction model. Based on the statistical model, for 2014, the predicted number of TCs passing through NYS is 0.33 and the probability of one or more tropical cyclones crossing NYS is 30%, which are both below average and in agreement with the actual activity (0 NYS TCs).

Full access
Tao Zhang
,
Wuyin Lin
,
Yanluan Lin
,
Minghua Zhang
,
Haiyang Yu
,
Kathy Cao
, and
Wei Xue

Abstract

Tropical cyclone (TC) genesis is a problem of great significance in climate and weather research. Although various environmental conditions necessary for TC genesis have been recognized for a long time, prediction of TC genesis remains a challenge due to complex and stochastic processes involved during TC genesis. Different from traditional statistical and dynamical modeling of TC genesis, in this study, a machine learning framework is developed to determine whether a mesoscale convective system (MCS) would evolve into a tropical cyclone. The machine learning models 1) are built upon a number of essential environmental predictors associated with MCSs/TCs, 2) predict whether MCSs can become TCs at different lead times, and 3) provide information about the relative importance of each predictor, which can be conducive to discovering new aspects of TC genesis. The results indicate that the machine learning classifier, AdaBoost, is able to achieve a 97.2% F1-score accuracy in predicting TC genesis over the entire tropics at a 6-h lead time using a comprehensive set of environmental predictors. A robust performance can still be attained when the lead time is extended to 12, 24, and 48 h, and when this machine learning classifier is separately applied to the North Atlantic Ocean and the western North Pacific Ocean. In contrast, the conventional approach based on the genesis potential index can have no more than an 80% F1-score accuracy. Furthermore, the machine learning classifier suggests that the low-level vorticity and genesis potential index are the most important predictors to TC genesis, which is consistent with previous discoveries.

Full access
Cheng Zheng
,
Edmund Kar-Man Chang
,
Hyemi Kim
,
Minghua Zhang
, and
Wanqiu Wang

Abstract

The prediction of wintertime extratropical cyclone activity (ECA) on subseasonal time scales by models participating in the Subseasonal Experiment (SubX) and the Seasonal to Subseasonal Prediction (S2S) is assessed. Consistent with a previous study that investigated the S2S models, the SubX models have skillful predictions of ECA over regions from central North Pacific across North America to western North Atlantic, as well as East Asia and northern and southern part of eastern North Atlantic at 3–4 weeks lead time. SubX provides daily mean data, while S2S provides instantaneous data at 0000 UTC each day. This leads to different variance of ECA. Different S2S and SubX models have different reforecast initialization times and reforecast time periods. These factors can all lead to differences in prediction skill. To fairly compare the prediction skill between different models, we develop a novel way to evaluate the prediction of individual model across the two ensembles by comparing every model to the Climate Forecast System, version 2 (CFSv2), as CFSv2 has 6-hourly output and forecasts initialized every day. Among the S2S and SubX models, the European Centre for Medium-Range Weather Forecasts model exhibits the best prediction skill, followed by CFSv2. Our results also suggest that while the prediction skill is sensitive to forecast lead time, including forecasts up to 4 days old into the ensemble may still be useful for weeks 3–4 predictions of ECA.

Full access