Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Naomi Naik x
  • Journal of Physical Oceanography x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Gidon Eshel
and
Naomi H. Naik

Abstract

The authors present climatologies of a numerical model of the Red Sea, focusing on the dynamics of winter intermediate water formation. Northward flowing boundary currents are identified as the major dynamical elements. At the northern boundary, the eastern current follows the geometry, eventually turning back to the south. At ∼26°N and the western wall the two boundary currents collide. At the collision site, the denser eastern current subducts under the western boundary current. The subduction forces the western boundary current eastward into the interior. Convection communicates the surface fluxes to the downwelled plume and intermediate water forms. The estimated rate, 0.11 Sv (Sv ≡ 106 m3 s−1), agrees with previous estimates. The authors identify basin-scale sea-surface tilt to the north due to variable thermohaline forcings as the key dynamical variable. The resultant geostrophic eastward cross-channel flow interacts with the boundaries and creates upwelling and surface topography spatial patterns that drive the coastal jets. Upwelling-induced vortex stretching dominates the vorticity balance and governs the separation of the western boundary current from the western wall. The process ceases in the summer.

Full access
Wilco Hazeleger
,
Richard Seager
,
Martin Visbeck
,
Naomi Naik
, and
Keith Rodgers

Abstract

Transient eddies in the atmosphere induce a poleward transport of heat and moisture. A moist static energy budget of the surface layer is determined from the NCEP reanalysis data to evaluate the impact of the storm track. It is found that the transient eddies induce a cooling and drying of the surface layer with a monthly mean maximum of 60 W m−2. The cooling in the midlatitudes extends zonally over the entire basin. The impact of this cooling and drying on surface heat fluxes, sea surface temperature (SST), water mass transformation, and vertical structure of the Pacific is investigated using an ocean model coupled to an atmospheric mixed layer model. The cooling by atmospheric storms is represented by adding an eddy-induced transfer velocity to the mean velocity in an atmospheric mixed layer model. This is based on a parameterization of tracer transport by eddies in the ocean. When the atmospheric mixed layer model is coupled to an ocean model, realistic SSTs are simulated. The SST is up to 3 K lower due to the cooling by storms. The additional cooling leads to enhanced transformation rates of water masses in the midlatitudes. The enhanced shallow overturning cells affect even tropical regions. Together with realistic SST and deep winter mixed layer depths, this leads to formation of homogeneous water masses in the upper North Pacific, in accordance to observations.

Full access
Alexander Krupitsky
,
Vladimir M. Kamenkovich
,
Naomi Naik
, and
Mark A. Cane

Abstract

A linear equivalent barotropic (EB) model is applied to study the effects of the bottom topography H and baroclinicity on the total transport and the position of the Antarctic Circumpolar Current (ACC). The model is based on the observation of Killworth that the time mean velocity field of the FRAM Model is self-similar in the vertical.

A realistic large-scale topography H̄ is constructed by filtering 5-minute resolution data with an appropriate smoothing kernel. It is shown that the asymptotic behavior of the solution of the barotropic model (a particular case of the EB model) in the limit of very small bottom friction depends on subtle details of topography and basin geometry. Given the uncertainties of the smoothing procedure the authors conclude that the barotropic model is not robust with respect to possible variations of model topography.

The authors found that the EB model with a vertical profile function similar to that of Killworth reproduces the major features of the time- and depth-averaged FRAM solution, including the position and the transport of the ACC, reasonably well. The solution is robust with respect to uncertainties in H̄. The EB model is much improved by a parameterization of the bottom friction via near-bottom velocity, which tends to shut off the flow in the shallow regions.

Full access
Wilco Hazeleger
,
Richard Seager
,
Mark A. Cane
, and
Naomi H. Naik

Abstract

Pacific Ocean oceanic heat transport is studied in an ocean model coupled to an atmospheric mixed-layer model. The shallow meridional overturning circulation cells in the Tropics and subtropics transport heat away from the equator. The heat transport by the horizontal gyre circulation in the Tropics is smaller and directed toward the equator. The response of the Pacific oceanic heat transport to El Niño–like winds, extratropical winds, and variations in the Indonesian Throughflow is studied. Large, opposing changes are found in the heat transport by the meridional overturning and the horizontal gyres in response to El Niño–like winds. Consequently, the change in total heat transport is relatively small. The overturning transport decreases and the gyres spin down when the winds decrease in the Tropics. This compensation breaks down when the Indonesian Throughflow is allowed to vary in the model. A reduced Indonesian Throughflow, as observed during El Niño–like conditions, causes a large reduction of poleward heat transport in the South Pacific and affects the ocean heat transport in the southern tropical Pacific. Extratropical atmospheric anomalies can affect tropical ocean heat transport as the tropical thermocline is ventilated from the extratropics. The authors find that changes in the heat loss in the midlatitudes affect tropical ocean heat transport by driving an enhanced buoyancy-driven overturning that reaches into the Tropics. The results are related to observed changes in the overturning circulation in the Pacific in the 1990s, sea surface temperarture changes, and changes in atmospheric circulation. The results imply that the ratio of heat transport in the ocean to that in the atmosphere can change.

Full access
Richard Kleeman
,
Naomi H. Naik
, and
Mark A. Cane

Abstract

The observed subtropical gyre in the North Pacific shows a shift in meridional location with depth. At shallow levels the density deviation peaks at around 15°N while at deep levels the peak is more like 30°N. It is argued here using analytical solutions to the beta-plane shallow-water equations that such a shift can be explained by the effects of oceanic dissipation processes. These solutions show that the highly damped solution is approximately proportional to Ekman pumping whereas the lightly damped case tends toward the classical Sverdrup solution. In the North Pacific, Ekman pumping peaks near 15°N while the Sverdrup solution peaks at 30°N. It is further demonstrated that 1) density deviations in the upper ocean are more highly influenced by higher order baroclinic modes than those in the deep, which are influenced by the lower modes, and 2) constant dissipation effectively acts much more strongly on the higher order baroclinic modes because of their slower speeds and smaller Rossby radii. These two factors thus explain the observed shift in the gyre with depth.

Full access