Search Results

You are looking at 1 - 10 of 11 items for :

  • Author or Editor: Norman J. Rosenberg x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Norman J. Rosenberg
and
Shashi B. Verma

Abstract

The rate of evapotranspiration by irrigated alfalfa at Mead, NE (41°09′N; 96°30′W, elevation 354 m) reached record levels in 1976. Evapotranspiration was measured with precision weighing lysimeters in a field 1.9 ha in size. Evapotranspiration ranged during the growing season from 4.75 to 14.22 mm day−1 and exceeded 10 mm day−1 on one-third of the days studied. On each day of study the ratio of latent heat flux density (LE) to the sum of the net radiation and soil heat flux densities (Rn + S) was such that LE/(Rn + S) > 1, indicating the occurrence of significant sensible heat advection. On clear days during mid-summer the net radiation provides energy sufficient for evaporation of no more than 7 mm day−1. Sensible heat advection provided the remaining energy consumed in evapotranspiration. The unusually strong sensible heat advection likely was due to the generally dry condition of surrounding regions during the drought of 1976.

Full access
Blaine L. Blad
and
Norman J. Rosenberg

Abstract

Most reports show good agreement between evapotranspiration (ET) rates estimated by the Bowen Ratio-Energy Balance (BREB) method and rates measured with lysimeters, although underestimation by the BREB model has occasionally been reported. This study was conducted to evaluate the performance of the BREB technique in the climatic conditions characteristic of the central Great Plains, a region where a significant proportion of the energy consumed by evapotranspiration is supplied from advected sensible heat.

Agreement between the BREB method and lysimetric measurements of ET is good during non-advective periods but during advective periods the BREB model underestimates ET by about 20%. Data collected in this study suggest that the difference is due primarily to an inequality of the exchange coefficients for beat (K h ) and water vapor (K w ). In the development of the BREB method these coefficients are assumed to be identical but our results indicate that the ratio K h /K w is greater than 1 for the stable conditions associated with the downward transport of sensible heat.

Full access
Donald A. Wilhite
,
Norman J. Rosenberg
, and
Michael H. Glantz

Abstract

Severe and widespread drought occurred over a large portion of the United States between 1974 and 1977. Impacts on agriculture and other industries, as well as local water supplies, were substantial. The federal government responded with forty assistance programs administered by sixteen federal agencies. Assistance was provided primarily in the form of loans and grants to people, businesses and governments experiencing hardship caused by drought. The total cost of the program is estimated at $7–8 billion.

Federal response to the mid-1970s drought was largely untimely, ineffective and poorly coordinated. Four recommendations are offered that, if implemented, would improve future drought assessment and response efforts: 1) reliable and timely informational products and dissemination plans; 2) improved impact assessment techniques, especially in the agricultural sector, for use by government to identify periods of enhanced risk and to trigger assistance measures; 3) administratively centralized drought declaration procedures that are well publicized and consistently applied; and 4) standby assistance measures that encourage appropriate levels of risk management by producers and that are equitable, consistent and predictable. The development of a national drought plan that incorporates these four items is recommended. Atmospheric scientists have an important role to play in the collection and interpretation of near-real time weather data for use by government decision makers.

Full access
Thomas W. Brakke
,
Shashi B. Verma
, and
Norman J. Rosenberg

Abstract

Detailed knowledge of the advection of sensible heat is necessary to understand the energy balance of the evaporating surface in many parts of the world. Sensible heat advection can result from regional and/or local sources. The local and regional components of sensible heat advection (A loc and A reg, respectively) are identified and their magnitudes in a semi-arid to sub-humid zone are established in the work reported here. Measurements of dry- and wet-bulb air temperature, wind speed and net radiation were made above an irrigated alfalfa field with relatively dry surroundings upwind at Mead, NE. A modified Bowen ratio-energy balance method which incorporates horizontal gradients of air temperature and vapor pressure was used to compute evapotranspiration (ET) rates.

Sensible heat advection at the furthest upwind location in the irrigated field contributed from 15 to 50% of the energy consumed in ET on a daily basis. A reg was greatest on days with strong winds; A loc was independent of wind speed. The dryer the air, the greater the advection of sensible heat.

Full access
Raymond P. Motha
,
Shashi B. Verma
, and
Norman J. Rosenberg

Abstract

Thermal inversions induced by regional advection dominate the daytime climate of the central Great Plains during much of the growing season. The influence of these inversions on the turbulent transfer of momentum, sensible heat and water vapor was investigated through detailed observations over an alfalfa crop. The standard deviations of fluctuations in vertical velocity, air temperature and vapor pressure as well as the correlation coefficients for momentum, sensible heat and water vapor were found to be similar under both advective and lapse conditions. Results indicate that turbulent mixing is effectively maintained under advective conditions to transport large quantities of sensible heat to the crop surface and water vapor away from it.

Full access
T. Grayson Redford Jr.
,
Shashi B. Verma
, and
Norman J. Rosenberg

Abstract

Simultaneous measurements of humidity fluctuations over a crop made with a specially modified Lyman-alpha hygrometer and a fine-wire thermocouple psychrometer are compared. Standard deviations of the two sets of data are comparable except occasionally when wind speeds were low. The psychrometer appears to underestimate the vertical flux of water vapor due to its slow response. Analysis of humidity spectra and moisture flux cospectra shows that the Lyman-alpha hygrometer is superior to the psychrometer in response at high frequencies and low wind speeds.

Full access
Shashi B. Verma
,
Norman J. Rosenberg
, and
Blaine L. Blad

Abstract

Results are presented of micrometeorological measurements made over alfalfa and soybeans under conditions of sensible heat advection at Mead, Neb. The sensible heat advection phenomenon reported here is of a regional rather than a local nature. The exchange coefficient for sensible heat (KH ) is found to be generally greater than the exchange coefficient for water vapor (KW ). This result contradicts the usual assumption of equality of KH and KW under nonadvection (lapse or unstable) conditions when the net transfer of both sensible heat and water vapor are away from the earth's surface. Under advective conditions, however, heat and water vapor are transferred in opposite directions. Our results are supported by Warhaft's (1976) recently published theoretical analysis in which he concludes that the greatest departure of KH /KW from unity will occur when temperature and humidity gradients are of opposite sign.

Full access
T. Grayson Redford Jr.
,
Shashi B. Verma
, and
Norman J. Rosenberg

Abstract

Turbulent fluctuations of vertical wind and fluxes of momentum, sensible heat and latent heat measured with a drag anemometer are compared to like data measured with other instruments. Means of the measured parameters agreed well with energy balance computations of the heat fluxes and profile measurements of the momentum flux. Drag anemometer measurements of turbulent fluxes generally exceeded those obtained with a propeller anemometer, run concurrently. Spectral analysis indicates that the propeller anemometer did not respond well at high frequencies, causing an underestimation of the fluxes and vertical wind fluctuations. The drag anemometer appears to respond well up to 5 Hz.

Full access
Raymond P. Motha
,
Shashi B. Verma
, and
Norman J. Rosenberg

Abstract

Spectra of vertical and horizontal velocity, air temperature and humidity fluctuations were analyzed from measurements made over a well-watered alfalfa crop under conditions of sensible heat advection. Vertical velocity and air temperature spectra as well as cospectra of momentum, sensible heat and water vapor were found to be dependent on atmospheric thermal stratification. These spectra and cospectra were shifted toward higher frequencies under advective as compared to lapse conditions. These results indicate that the predominant eddy sizes are relatively smaller under advective conditions. Humidity spectra, on the other hand, were independent of daytime thermal stratification conditions but were influenced by conditions of the crop. The humidity spectra over a transpiring crop were shifted toward lower frequencies as compared to those over a less well-developed crop canopy.

Full access
Shashi B. Verma
,
Norman J. Rosenberg
, and
Blaine L. Blad

Abstract

No abstract available.

Full access