Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: P. M. Fleming x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
G. F. Byrne
,
P. M. Fleming
, and
J. D. Kalma

Abstract

Full access
M. V. Bilskie
,
T. G. Asher
,
P. W. Miller
,
J. G. Fleming
,
S. C. Hagen
, and
R. A. Luettich Jr.

Abstract

Storm surge caused by tropical cyclones can cause overland flooding and lead to loss of life while damaging homes, businesses, and critical infrastructure. In 2018, Hurricane Michael made landfall near Mexico Beach, Florida, on 10 October with peak wind speeds near 71.9 m s−1 (161 mph) and storm surge over 4.5 m NAVD88. During Hurricane Michael, water levels and waves were predicted near–real time using a deterministic, depth-averaged, high-resolution ADCIRC+SWAN model of the northern Gulf of Mexico. The model was forced with an asymmetrical parametric vortex model [generalized asymmetric Holland model (GAHM)] based on Michael’s National Hurricane Center (NHC) forecast track and strength. The authors report errors between simulated and observed water level time series, peak water level, and timing of peak for NHC advisories. Forecasts of water levels were within 0.5 m of observations, and the timing of peak water levels was within 1 h as early as 48 h before Michael’s eventual landfall. We also examined the effect of adding far-field meteorology in our TC vortex model for use in real-time forecasts. In general, we found that including far-field meteorology by blending the TC vortex with a basin-scale NWP product improved water level forecasts. However, we note that divergence between the NHC forecast track and the forecast track of the meteorological model supplying the far-field winds represents a potential limitation to operationalizing a blended wind field surge product. The approaches and data reported herein provide a transparent assessment of water level forecasts during Hurricane Michael and highlight potential future improvements for more accurate predictions.

Open access
R. H. Moss
,
S. Avery
,
K. Baja
,
M. Burkett
,
A. M. Chischilly
,
J. Dell
,
P. A. Fleming
,
K. Geil
,
K. Jacobs
,
A. Jones
,
K. Knowlton
,
J. Koh
,
M. C. Lemos
,
J. Melillo
,
R. Pandya
,
T. C. Richmond
,
L. Scarlett
,
J. Snyder
,
M. Stults
,
A. M. Waple
,
J. Whitehead
,
D. Zarrilli
,
B. M. Ayyub
,
J. Fox
,
A. Ganguly
,
L. Joppa
,
S. Julius
,
P. Kirshen
,
R. Kreutter
,
A. McGovern
,
R. Meyer
,
J. Neumann
,
W. Solecki
,
J. Smith
,
P. Tissot
,
G. Yohe
, and
R. Zimmerman

Abstract

As states, cities, tribes, and private interests cope with climate damages and seek to increase preparedness and resilience, they will need to navigate myriad choices and options available to them. Making these choices in ways that identify pathways for climate action that support their development objectives will require constructive public dialogue, community participation, and flexible and ongoing access to science- and experience-based knowledge. In 2016, a Federal Advisory Committee (FAC) was convened to recommend how to conduct a sustained National Climate Assessment (NCA) to increase the relevance and usability of assessments for informing action. The FAC was disbanded in 2017, but members and additional experts reconvened to complete the report that is presented here. A key recommendation is establishing a new nonfederal “climate assessment consortium” to increase the role of state/local/tribal government and civil society in assessments. The expanded process would 1) focus on applied problems faced by practitioners, 2) organize sustained partnerships for collaborative learning across similar projects and case studies to identify effective tested practices, and 3) assess and improve knowledge-based methods for project implementation. Specific recommendations include evaluating climate models and data using user-defined metrics; improving benefit–cost assessment and supporting decision-making under uncertainty; and accelerating application of tools and methods such as citizen science, artificial intelligence, indicators, and geospatial analysis. The recommendations are the result of broad consultation and present an ambitious agenda for federal agencies, state/local/tribal jurisdictions, universities and the research sector, professional associations, nongovernmental and community-based organizations, and private-sector firms.

Open access
R. H. Moss
,
S. Avery
,
K. Baja
,
M. Burkett
,
A. M. Chischilly
,
J. Dell
,
P. A. Fleming
,
K. Geil
,
K. Jacobs
,
A. Jones
,
K. Knowlton
,
J. Koh
,
M. C. Lemos
,
J. Melillo
,
R. Pandya
,
T. C. Richmond
,
L. Scarlett
,
J. Snyder
,
M. Stults
,
A. Waple
,
J. Whitehead
,
D. Zarrilli
,
J. Fox
,
A. Ganguly
,
L. Joppa
,
S. Julius
,
P. Kirshen
,
R. Kreutter
,
A. McGovern
,
R. Meyer
,
J. Neumann
,
W. Solecki
,
J. Smith
,
P. Tissot
,
G. Yohe
, and
R. Zimmerman
Full access
S. I. Bohnenstengel
,
S. E. Belcher
,
A. Aiken
,
J. D. Allan
,
G. Allen
,
A. Bacak
,
T. J. Bannan
,
J. F. Barlow
,
D. C. S. Beddows
,
W. J. Bloss
,
A. M. Booth
,
C. Chemel
,
O. Coceal
,
C. F. Di Marco
,
M. K. Dubey
,
K. H. Faloon
,
Z. L. Fleming
,
M. Furger
,
J. K. Gietl
,
R. R. Graves
,
D. C. Green
,
C. S. B. Grimmond
,
C. H. Halios
,
J. F. Hamilton
,
R. M. Harrison
,
M. R. Heal
,
D. E. Heard
,
C. Helfter
,
S. C. Herndon
,
R. E. Holmes
,
J. R. Hopkins
,
A. M. Jones
,
F. J. Kelly
,
S. Kotthaus
,
B. Langford
,
J. D. Lee
,
R. J. Leigh
,
A. C. Lewis
,
R. T. Lidster
,
F. D. Lopez-Hilfiker
,
J. B. McQuaid
,
C. Mohr
,
P. S. Monks
,
E. Nemitz
,
N. L. Ng
,
C. J. Percival
,
A. S. H. Prévôt
,
H. M. A. Ricketts
,
R. Sokhi
,
D. Stone
,
J. A. Thornton
,
A. H. Tremper
,
A. C. Valach
,
S. Visser
,
L. K. Whalley
,
L. R. Williams
,
L. Xu
,
D. E. Young
, and
P. Zotter

Abstract

Air quality and heat are strong health drivers, and their accurate assessment and forecast are important in densely populated urban areas. However, the sources and processes leading to high concentrations of main pollutants, such as ozone, nitrogen dioxide, and fine and coarse particulate matter, in complex urban areas are not fully understood, limiting our ability to forecast air quality accurately. This paper introduces the Clean Air for London (ClearfLo; www.clearflo.ac.uk) project’s interdisciplinary approach to investigate the processes leading to poor air quality and elevated temperatures.

Within ClearfLo, a large multi-institutional project funded by the U.K. Natural Environment Research Council (NERC), integrated measurements of meteorology and gaseous, and particulate composition/loading within the atmosphere of London, United Kingdom, were undertaken to understand the processes underlying poor air quality. Long-term measurement infrastructure installed at multiple levels (street and elevated), and at urban background, curbside, and rural locations were complemented with high-resolution numerical atmospheric simulations. Combining these (measurement–modeling) enhances understanding of seasonal variations in meteorology and composition together with the controlling processes. Two intensive observation periods (winter 2012 and the Summer Olympics of 2012) focus upon the vertical structure and evolution of the urban boundary layer; chemical controls on nitrogen dioxide and ozone production—in particular, the role of volatile organic compounds; and processes controlling the evolution, size, distribution, and composition of particulate matter. The paper shows that mixing heights are deeper over London than in the rural surroundings and that the seasonality of the urban boundary layer evolution controls when concentrations peak. The composition also reflects the seasonality of sources such as domestic burning and biogenic emissions.

Full access
Guy P. Brasseur
,
Mohan Gupta
,
Bruce E. Anderson
,
Sathya Balasubramanian
,
Steven Barrett
,
David Duda
,
Gregg Fleming
,
Piers M. Forster
,
Jan Fuglestvedt
,
Andrew Gettelman
,
Rangasayi N. Halthore
,
S. Daniel Jacob
,
Mark Z. Jacobson
,
Arezoo Khodayari
,
Kuo-Nan Liou
,
Marianne T. Lund
,
Richard C. Miake-Lye
,
Patrick Minnis
,
Seth Olsen
,
Joyce E. Penner
,
Ronald Prinn
,
Ulrich Schumann
,
Henry B. Selkirk
,
Andrei Sokolov
,
Nadine Unger
,
Philip Wolfe
,
Hsi-Wu Wong
,
Donald W. Wuebbles
,
Bingqi Yi
,
Ping Yang
, and
Cheng Zhou

Abstract

Under the Federal Aviation Administration’s (FAA) Aviation Climate Change Research Initiative (ACCRI), non-CO2 climatic impacts of commercial aviation are assessed for current (2006) and for future (2050) baseline and mitigation scenarios. The effects of the non-CO2 aircraft emissions are examined using a number of advanced climate and atmospheric chemistry transport models. Radiative forcing (RF) estimates for individual forcing effects are provided as a range for comparison against those published in the literature. Preliminary results for selected RF components for 2050 scenarios indicate that a 2% increase in fuel efficiency and a decrease in NOx emissions due to advanced aircraft technologies and operational procedures, as well as the introduction of renewable alternative fuels, will significantly decrease future aviation climate impacts. In particular, the use of renewable fuels will further decrease RF associated with sulfate aerosol and black carbon. While this focused ACCRI program effort has yielded significant new knowledge, fundamental uncertainties remain in our understanding of aviation climate impacts. These include several chemical and physical processes associated with NOx–O3–CH4 interactions and the formation of aviation-produced contrails and the effects of aviation soot aerosols on cirrus clouds as well as on deriving a measure of change in temperature from RF for aviation non-CO2 climate impacts—an important metric that informs decision-making.

Full access