Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Patrick Duran x
  • Tropical Cyclone Intensity Experiment (TCI) x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Patrick Duran and John Molinari

Abstract

Dropsondes with horizontal spacing as small as 4 km were released from the stratosphere in rapidly intensifying Hurricane Patricia (2015) during the Office of Naval Research Tropical Cyclone Intensity experiment. These observations provide cross sections of unprecedented resolution through the inner core of a hurricane. On 21 October, Patricia exhibited a strong tropopause inversion layer (TIL) across its entire circulation, with a maximum magnitude of 5.1 K (100 m)−1. This inversion weakened between 21 and 22 October as potential temperature θ increased by up to 16 K just below the tropopause and decreased by up to 14 K in the lower stratosphere. Between 22 and 23 October, the TIL over the eye weakened further, allowing the tropopause to rise by 1 km. Meanwhile over Patricia’s secondary eyewall, the TIL restrengthened and bulged upward by about 700 m into what was previously the lower stratosphere. These observations support many aspects of recent modeling studies, including eyewall penetration into the stratosphere during rapid intensification (RI), the existence of a narrow inflow layer near the tropopause, and the role of subsidence from the stratosphere in developing an upper-level warm core. Three mechanisms of inner-core tropopause variability are hypothesized: destabilization of the TIL through turbulent mixing, weakening of the TIL over the eye through upper-tropospheric subsidence warming, and increasing tropopause height forced by overshooting updrafts in the eyewall. None of these processes are seen as the direct cause of RI, but rather part of the RI process that includes strong increases in boundary layer moist entropy.

Full access
Patrick Duran and John Molinari

Abstract

Upper-level static stability (N2) variations can influence the evolution of the transverse circulation and potential vorticity in intensifying tropical cyclones (TCs). This paper examines these variations during the rapid intensification (RI) of a simulated TC. Over the eye, N2 near the tropopause decreases and the cold-point tropopause rises by up to 4 km at the storm center. Outside of the eye, N2 increases considerably just above the cold-point tropopause and the tropopause remains near its initial level. A budget analysis reveals that the advection terms, which include differential advection of potential temperature θ and direct advection of N2, are important throughout the upper troposphere and lower stratosphere. These terms are particularly pronounced within the eye, where they destabilize the layer near and above the cold-point tropopause. Outside of the eye, a radial–vertical circulation develops during RI, with strong outflow below the tropopause and weak inflow above. Differential advection of θ near the outflow jet provides forcing for stabilization below the outflow maximum and destabilization above. Turbulence induced by vertical wind shear on the flanks of the outflow maximum also modifies the vertical stability profile. Meanwhile, radiative cooling tendencies at the top of the cirrus canopy generally act to destabilize the upper troposphere and stabilize the lower stratosphere. The results suggest that turbulence and radiation, alongside differential advection, play fundamental roles in the upper-level N2 evolution of TCs. These N2 tendencies could have implications for both the TC diurnal cycle and the tropopause-layer potential vorticity evolution in TCs.

Full access
James D. Doyle, Jonathan R. Moskaitis, Joel W. Feldmeier, Ronald J. Ferek, Mark Beaubien, Michael M. Bell, Daniel L. Cecil, Robert L. Creasey, Patrick Duran, Russell L. Elsberry, William A. Komaromi, John Molinari, David R. Ryglicki, Daniel P. Stern, Christopher S. Velden, Xuguang Wang, Todd Allen, Bradford S. Barrett, Peter G. Black, Jason P. Dunion, Kerry A. Emanuel, Patrick A. Harr, Lee Harrison, Eric A. Hendricks, Derrick Herndon, William Q. Jeffries, Sharanya J. Majumdar, James A. Moore, Zhaoxia Pu, Robert F. Rogers, Elizabeth R. Sanabia, Gregory J. Tripoli, and Da-Lin Zhang

Abstract

Tropical cyclone (TC) outflow and its relationship to TC intensity change and structure were investigated in the Office of Naval Research Tropical Cyclone Intensity (TCI) field program during 2015 using dropsondes deployed from the innovative new High-Definition Sounding System (HDSS) and remotely sensed observations from the Hurricane Imaging Radiometer (HIRAD), both on board the NASA WB-57 that flew in the lower stratosphere. Three noteworthy hurricanes were intensively observed with unprecedented horizontal resolution: Joaquin in the Atlantic and Marty and Patricia in the eastern North Pacific. Nearly 800 dropsondes were deployed from the WB-57 flight level of ∼60,000 ft (∼18 km), recording atmospheric conditions from the lower stratosphere to the surface, while HIRAD measured the surface winds in a 50-km-wide swath with a horizontal resolution of 2 km. Dropsonde transects with 4–10-km spacing through the inner cores of Hurricanes Patricia, Joaquin, and Marty depict the large horizontal and vertical gradients in winds and thermodynamic properties. An innovative technique utilizing GPS positions of the HDSS reveals the vortex tilt in detail not possible before. In four TCI flights over Joaquin, systematic measurements of a major hurricane’s outflow layer were made at high spatial resolution for the first time. Dropsondes deployed at 4-km intervals as the WB-57 flew over the center of Hurricane Patricia reveal in unprecedented detail the inner-core structure and upper-tropospheric outflow associated with this historic hurricane. Analyses and numerical modeling studies are in progress to understand and predict the complex factors that influenced Joaquin’s and Patricia’s unusual intensity changes.

Open access