Search Results

You are looking at 1 - 10 of 16 items for

  • Author or Editor: Piers Forster x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Piers M. De F. Forster

Abstract

A discrete-ordinate radiative transfer model is employed for the prediction of surface UV irradiances. A wide-ranging sensitivity study is undertaken to show how changes to the model input parameters aged UV irradiances at the surface. The effects of surface albedo, surface pressure, aerosol, cloud, and ozone on the UV irradiances are examined as well as the effects of model resolution. The ozone vertical profile and the temperature of the ozone layer are found to strongly influence UVB (280–320 nm) surface irradiances; the irradiance at 305 nm can be changed by as much as 17% for a fixed amount of total column ozone. The surface albedo is found to have a maximum influence on wavelengths near 320 nm; an uncertainty in the surface albedo of 0.2 leads to an 8% error in the UVB prediction. Clouds and tropospheric aerosol decrease the UV, their influence depending little on wavelength. Stratospheric aerosol is shown to be able to enhance the midwinter UVB surface irradiances while decreasing the UVA (320–400 nm) surface irradiances.

Full access
Piers Mde F. Forster and Karl E. Taylor

Abstract

A simple technique is proposed for calculating global mean climate forcing from transient integrations of coupled atmosphere–ocean general circulation models (AOGCMs). This “climate forcing” differs from the conventionally defined radiative forcing as it includes semidirect effects that account for certain short time scale responses in the troposphere. First, a climate feedback term is calculated from reported values of 2 × CO2 radiative forcing and surface temperature time series from 70-yr simulations by 20 AOGCMs. In these simulations carbon dioxide is increased by 1% yr−1. The derived climate feedback agrees well with values that are diagnosed from equilibrium climate change experiments of slab-ocean versions of the same models. These climate feedback terms are associated with the fast, quasi-linear response of lapse rate, clouds, water vapor, and albedo to global surface temperature changes. The importance of the feedbacks is gauged by their impact on the radiative fluxes at the top of the atmosphere. Partial compensation is found between longwave and shortwave feedback terms that lessens the intermodel differences in the equilibrium climate sensitivity. There is also some indication that the AOGCMs overestimate the strength of the positive longwave feedback.

These feedback terms are then used to infer the shortwave and longwave time series of climate forcing in twentieth- and twenty-first-century simulations in the AOGCMs. The technique is validated using conventionally calculated forcing time series from four AOGCMs. In these AOGCMs the shortwave and longwave climate forcings that are diagnosed agree with the conventional forcing time series within ∼10%. The shortwave forcing time series exhibit order of magnitude variations between the AOGCMs, differences likely related to how both natural forcings and/or anthropogenic aerosol effects are included. There are also factor of 2 differences in the longwave climate forcing time series, which may indicate problems with the modeling of well-mixed greenhouse gas changes. The simple diagnoses presented provides an important and useful first step for understanding differences in AOGCM integrations, indicating that some of the differences in model projections can be attributed to different prescribed climate forcing, even for so-called standard climate change scenarios.

Full access
William J. Randel, Fei Wu, and Piers Forster

Abstract

Global characteristics of the extratropical tropopause inversion layer identified in radiosonde observations by Birner are studied using high vertical resolution temperature profiles from GPS radio occultation measurements. The GPS data are organized according to the height of the thermal tropopause in each profile, and a temperature inversion layer above the tropopause (with an average magnitude of 3–5 K) is found to be a ubiquitous, climatological feature. The GPS data show that the inversion layer is present for all seasons in both hemispheres, spanning the subtropics to the pole, and there is not strong longitudinal structure. Dependence of the inversion layer on upper-troposphere vorticity is studied; while anticyclones exhibit a substantially stronger inversion than cyclones (as expected from balanced dynamics), the inversion is evident for all circulation types. Radiative transfer calculations indicate that strong gradients in both ozone and water vapor near the tropopause contribute to the inversion. Significant absorption of both longwave and shortwave radiation by ozone occurs, warming the region above the tropopause. Water vapor near and immediately above the tropopause contributes to cooling, effectively enhancing the inversion.

Full access
Piers Mde F. Forster and Jonathan M. Gregory

Abstract

One of the major uncertainties in the ability to predict future climate change, and hence its impacts, is the lack of knowledge of the earth’s climate sensitivity. Here, data are combined from the 1985–96 Earth Radiation Budget Experiment (ERBE) with surface temperature change information and estimates of radiative forcing to diagnose the climate sensitivity. Importantly, the estimate is completely independent of climate model results. A climate feedback parameter of 2.3 ± 1.4 W m−2 K−1 is found. This corresponds to a 1.0–4.1-K range for the equilibrium warming due to a doubling of carbon dioxide (assuming Gaussian errors in observable parameters, which is approximately equivalent to a uniform “prior” in feedback parameter). The uncertainty range is due to a combination of the short time period for the analysis as well as uncertainties in the surface temperature time series and radiative forcing time series, mostly the former. Radiative forcings may not all be fully accounted for; however, an argument is presented that the estimate of climate sensitivity is still likely to be representative of longer-term climate change. The methodology can be used to 1) retrieve shortwave and longwave components of climate feedback and 2) suggest clear-sky and cloud feedback terms. There is preliminary evidence of a neutral or even negative longwave feedback in the observations, suggesting that current climate models may not be representing some processes correctly if they give a net positive longwave feedback.

Full access
Lawrence S. Jackson and Piers M. Forster

Abstract

The diurnal temperature range (DTR) of surface air over land varies geographically and seasonally. The authors have investigated these variations using generalized additive models (GAMs), a nonlinear regression methodology. With DTR as the response variable, meteorological and land surface parameters were treated as explanatory variables. Regression curves related the deviation of DTR from its mean value to values of the meteorological and land surface variables. Cloud cover, soil moisture, distance inland, solar radiation, and elevation were combined as explanatory variables in an ensemble of 84 GAM models that used data grouped into seven vegetation types and 12 months. The ensemble explained 80% of the geographical and seasonal variation in DTR. Vegetation type and cloud cover exhibited the strongest relationships with DTR. Shortwave radiation, distance inland, and elevation were positively correlated with DTR, whereas cloud cover and soil moisture were negatively correlated. A separate analysis of the surface energy budget showed that changes in net longwave radiation represented the effects of solar and hydrological variation on DTR. It is found that vegetation and its associated climate is important for DTR variation in addition to the climatic influence of cloud cover, soil moisture, and solar radiation. It is also found that surface net longwave radiation is a powerful diagnostic of DTR variation, explaining over 95% of the seasonal variation of DTR in tropical regions.

Full access
Don Wuebbles, Piers Forster, Helen Rogers, and Redina Herman

Metrics such as radiative forcing and global warming potential have proven to be useful tools in climate policy–related studies, including evaluation of the effects of aviation on climate, to relate different emissions to one another in order to maximize the application of mitigation policies and their benefits. In order to be an effective tool for policymakers and their communication with scientists and industry, a metric should be easy to use and as scientifically well grounded as possible. Thus, the best metrics will be simple and will include uncertainties that reflect the state of knowledge in order to give users confidence in their scientific quality. A concern with developing new metrics is the need to weigh their applicability against the ease of understanding the results. Radiative forcing is commonly used in analyses of aviation effects on climate and is integral to other metrics, but it has known deficiencies. Well-recognized metrics like global warming potential and global temperature potential are dependent on radiative forcing but also have their own advantages and recognized limitations. Simplified integrated assessment modeling may eventually represent a useful alternative to such metrics. The objective of this study is to examine the capabilities and limitations of current climate metrics in the context of the aviation impact on climate change, to analyze key uncertainties associated with these metrics and, to the extent possible, to make recommendations on future research and development of metrics to gauge aviation-induced climate change that could potentially affect decision making, including aircraft design and operations.

Full access
Kevin M. Grise, David W. J. Thompson, and Piers M. Forster

Abstract

Climate change in the Southern Hemisphere (SH) polar stratosphere is associated with substantial changes in the atmospheric circulation that extend to the earth’s surface. The mechanisms that drive the changes in the SH troposphere are not fully understood, but most previous hypotheses have focused on the role of atmospheric dynamics rather than that of radiation.

This study quantifies the radiative response of temperatures in the SH polar troposphere to the forcing from long-term temperature and ozone trends in the SH polar stratosphere. A novel methodology is employed that explicitly neglects changes in tropospheric dynamics and hence isolates the component of the tropospheric temperature response that is radiatively driven by the overlying stratospheric trends. The results reveal that both the amplitude and seasonality of the observed cooling of the middle and upper SH polar troposphere over the past few decades are consistent with a reduction in downwelling longwave radiation induced by cooling in the SH polar stratosphere. The results are compared with analogous calculations for trends in the Northern Hemisphere (NH) polar stratosphere. Both the observations and radiative calculations imply that the comparatively weak trends in the NH polar stratosphere have not played a central role in driving NH tropospheric climate change.

Overall, the results suggest that radiative processes play a key role in coupling the large trends in SH polar stratospheric temperatures to tropospheric levels. The tropospheric radiative temperature response documented here could be important for triggering the changes in internal tropospheric dynamics associated with stratosphere–troposphere coupling.

Full access
Timothy Andrews, Piers M. Forster, and Jonathan M. Gregory

Abstract

A surface forcing response framework is developed that enables an understanding of time-dependent climate change from a surface energy perspective. The framework allows the separation of fast responses that are unassociated with global-mean surface air temperature change (ΔT), which is included in the forcing, and slow feedbacks that scale with ΔT. The framework is illustrated primarily using 2 × CO2 climate model experiments and is robust across the models. For CO2 increases, the positive downward radiative component of forcing is smaller at the surface than at the tropopause, and so a rapid reduction in the upward surface latent heat (LH) flux is induced to conserve the tropospheric heat budget; this reduces the precipitation rate. Analysis of the time-dependent surface energy balance over sea and land separately reveals that land areas rapidly regain energy balance, and significant land surface warming occurs before global sea temperatures respond. The 2 × CO2 results are compared to a solar increase experiment and show that some fast responses are forcing dependent. In particular, a significant forcing from the fast hydrological response found in the CO2 experiments is much smaller in the solar experiment. The different fast response explains why previous equilibrium studies found differences in the hydrological sensitivity between these two forcings. On longer time scales, as ΔT increases, the net surface longwave and LH fluxes provide positive and negative surface feedbacks, respectively, while the net surface shortwave and sensible heat fluxes change little. It is found that in contrast to their fast responses, the longer-term response of both surface energy fluxes and the global hydrological cycle are similar for the different forcing agents.

Full access
Julia A. Crook, Piers M. Forster, and Nicola Stuber

Abstract

Spatial patterns of local climate feedback and equilibrium partial temperature responses are produced from eight general circulation models with slab oceans forced by doubling carbon dioxide (CO2). The analysis is extended to other forcing mechanisms with the Met Office Hadley Centre slab ocean climate model version 3 (HadSM3). In agreement with previous studies, the greatest intermodel differences are in the tropical cloud feedbacks. However, the greatest intermodel spread in the equilibrium temperature response comes from the water vapor plus lapse rate feedback, not clouds, disagreeing with a previous study. Although the surface albedo feedback contributes most in the annual mean to the greater warming of high latitudes, compared to the tropics (polar amplification), its effect is significantly ameliorated by shortwave cloud feedback. In different seasons the relative importance of the contributions varies considerably, with longwave cloudy-sky feedback and horizontal heat transport plus ocean heat release playing a major role during winter and autumn when polar amplification is greatest. The greatest intermodel spread in annual mean polar amplification is due to variations in horizontal heat transport and shortwave cloud feedback. Spatial patterns of local climate feedback for HadSM3 forced with 2 × CO2, +2% solar, low-level scattering aerosol and high-level absorbing aerosol are more similar than those for different models forced with 2 × CO2. However, the equilibrium temperature response to high-level absorbing aerosol shows considerably enhanced polar amplification compared to the other forcing mechanisms, largely due to differences in horizontal heat transport and water vapor plus lapse rate feedback, with the forcing itself acting to reduce amplification. Such variations in high-latitude response between models and forcing mechanisms make it difficult to infer specific causes of recent Arctic temperature change.

Full access
Andrew Heymsfield, Darrel Baumgardner, Paul DeMott, Piers Forster, Klaus Gierens, and Bernd Kärcher

This article reviews the current state of understanding of the science of contrails: 1) how they are formed, 2) their microphysical properties as they evolve into contrail cirrus and whether their microphysical properties can be distinguished from natural cirrus, and 3) the ice-nucleating properties of soot aerosols and whether these aerosols can nucleate cirrus crystals. Key gaps and underlying uncertainties in our understanding of contrails and their effect on local, regional, and global climate are identified. These include 1) better quantification of the fraction of ice number and mass that survives the vortex phase and the aircraft-specific influences on the vortex dynamics, 2) more accurate measurements of the ice crystal size distributions of contrail cirrus and cirrus in general, which are uncertain because of instrument limitations, and 3) more measurements of the ice-nucleating properties of aircraft exhaust and other ambient ice nuclei in situ under cirrus-forming conditions. Future field campaigns aimed at satisfying measurement needs are proposed.

Full access