Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: R. A. Ferrare x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
R. A. Ferrare, J. L. Schols, E. W. Eloranta, and R. Coulter


Lidar observations of clear-air convection during the 1983 Boundary Layer Experiment (BLX83) reveal the presence of elongated, parallel regions of updrafts marked by enhanced aerosol backscattering. These linear (banded) aerosol structures were observed over a two-hour period during a cloud-free morning. During this period, the depth of the convective boundary layer (CBL) increased from 100 to 1300 m. Wind speeds averaged over the depth of the CBL varied between 0 and 2 m s−1, while the wind direction varied over a range of 160 deg. The CBL instability parameter, −Zi/L, increased from approximately 25 (weakly unstable) to 250 (strongly unstable). The spacings of the elongated, parallel plumes scaled with the CBL height. These findings suggest that secondary circulations in the form of horizontal roll vortices were present under conditions not normally associated with roll vortices. The lines of aerosol structures aligned much more closely (within 15 deg) with the direction of the vertical shear of the horizontal wind through the depth of the CBL than with either the surface wind, mean CBL wind, or the wind at an altitude of 1.1Zi.

Full access
J. R. Wang, S. H. Melfi, P. Racette, D. N. Whitemen, L. A. Chang, R. A. Ferrare, K. D. Evans, and F. J. Schmidlin


Simultaneous measurements of atmospheric water vapor were made by the Millimeter-wave Imaging Radiometer (MIR), Raman lidar, and rawinsondes. Two types of rawinsonde sensor packages (AIR and Vaisala) were carried by the same balloon. The measured water vapor profiles from Raman lidar, and the Vaisala and AIR sondes were used in the radiative transfer calculations. The calculated brightness temperatures were compared with those measured from the MIR at all six frequencies (89, 150, 183.3 ± 1, 183.3 ±3, 183.3 ±7, and 220 GHz). The results show that the MIR-measured brightness temperatures agree well (within ±K) with those calculated from the Raman lidar and Vaisala measurements. The brightness temperatures calculated from the AIR sondes differ from the MIR measurements by as much as 10 K, which can be attributed to low sensitivity of the AIR sondes at relative humidity less than 20%. Both calculated and the MIR-measured brightness temperatures were also used to retrieve water vapor profiles. These retrieved profiles were compared with those measured by the Raman lidar and rawinsondes. The results of these comparisons suggest that the MIR can measure the brightness of a target to an accuracy of at most ±K and is capable of retrieving useful water vapor profiles.

Full access