Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: R. L. Thompson x
- Journal of the Atmospheric Sciences x
- Refine by Access: Content accessible to me x
Abstract
The results of four balloon flights of the NOAA ultraviolet fluorescence stratospheric water vapor instrument are presented. A series of improvements in the instrument has brought results which are credibly free from contamination by outgassing. The results are in essential agreement with the extensive soundings by H.J. Mastenbrook. The minimum water vapor mixing ratio occurs 2–3 km above the tropopause in both tropical and temperature latitudes. Our measured minimum values were 2.6 ppmv over Brazil (5°S) and 3.6 ppmv over Wyoming (41°N), with an estimated total error of 20%. This degree of dryness permits the conclusion that the global circulation originally proposed by Brewer is correct; i.e., that air enters the stratosphere from the troposphere in substantial quantities only through the tropical tropopause. This general circulation must apply to all other trace gases of tropospheric origin as well. The carbon monoxide measurements of Seiler support the conclusion.
Abstract
The results of four balloon flights of the NOAA ultraviolet fluorescence stratospheric water vapor instrument are presented. A series of improvements in the instrument has brought results which are credibly free from contamination by outgassing. The results are in essential agreement with the extensive soundings by H.J. Mastenbrook. The minimum water vapor mixing ratio occurs 2–3 km above the tropopause in both tropical and temperature latitudes. Our measured minimum values were 2.6 ppmv over Brazil (5°S) and 3.6 ppmv over Wyoming (41°N), with an estimated total error of 20%. This degree of dryness permits the conclusion that the global circulation originally proposed by Brewer is correct; i.e., that air enters the stratosphere from the troposphere in substantial quantities only through the tropical tropopause. This general circulation must apply to all other trace gases of tropospheric origin as well. The carbon monoxide measurements of Seiler support the conclusion.
Abstract
A number of N2O profiles obtained in the troposphere and stratosphere at five latitudes are reported. The variability in the reported stratosphere N20 mixing ratios is substantial and indicates a strong dependence on both stratospheric transport and photochemistry. A profile obtained at Panama indicates a relatively large transport of N2O into the stratosphere at low latitudes. This profile represents the first one obtained in the tropics. From the observed data, area-averaged, global vertical eddy diffusion coefficients were derived that were found to be a factor of 1.5 to 3 times larger than those derived by Hunten from data obtained at locations not including the tropics. The derived eddy diffusion profile is heavily weighted by one single profile in the tropics and more observations are needed to substantiate this finding.
The estimated flux of N20 into the stratosphere was equal to 15×1012 g(N) per year and the total stratospheric production of NO x was estimated to be 1.6×1012 g(N) per year. The atmospheric turnover time of N20 would he 100 years if photochemical reactions were the only sink for atmospheric N20.
Abstract
A number of N2O profiles obtained in the troposphere and stratosphere at five latitudes are reported. The variability in the reported stratosphere N20 mixing ratios is substantial and indicates a strong dependence on both stratospheric transport and photochemistry. A profile obtained at Panama indicates a relatively large transport of N2O into the stratosphere at low latitudes. This profile represents the first one obtained in the tropics. From the observed data, area-averaged, global vertical eddy diffusion coefficients were derived that were found to be a factor of 1.5 to 3 times larger than those derived by Hunten from data obtained at locations not including the tropics. The derived eddy diffusion profile is heavily weighted by one single profile in the tropics and more observations are needed to substantiate this finding.
The estimated flux of N20 into the stratosphere was equal to 15×1012 g(N) per year and the total stratospheric production of NO x was estimated to be 1.6×1012 g(N) per year. The atmospheric turnover time of N20 would he 100 years if photochemical reactions were the only sink for atmospheric N20.