Search Results

You are looking at 1 - 9 of 9 items for :

  • Author or Editor: R. Meyer x
  • Bulletin of the American Meteorological Society x
  • User-accessible content x
Clear All Modify Search
Andreas Schiller, Gary Meyers, and Neville R. Smith

Abstract

No abstract available.

Full access
N. Voisin, M. Kintner-Meyer, D. Wu, R. Skaggs, T. Fu, T. Zhou, T. Nguyen, and I. Kraucunas

Abstract

The increasing interconnectedness of energy and water systems makes it important to understand how interannual variations in water availability—and climate oscillations—could potentially impact the electric grid operations. The authors assess the vulnerability of the current western U.S. grid to historical climate variability using multiple energy and water system models. A 55-yr-long natural water availability benchmark is combined with the 2010 level of water demand from an integrated assessment model to drive a large-scale water management model over the western United States. The regulated flow at hydropower and thermoelectric power plants is then translated into boundary conditions for electricity generation in a production cost model. This analysis focuses on assessing regional interdependencies and the impact of interannual changes in water availability on power system operations, including reliability, cost, and carbon emissions. Results for August grid operations—when stress on the grid is often highest—show a range of sensitivity in production cost (–8% to +11%) and carbon emissions (–7% to +11%), as well as a 1-in-10 chance that electricity demand will exceed estimated supply. The authors also show that operating costs are lower under neutral El Niño–Southern Oscillation (ENSO) conditions than under other ENSO phases; carbon emissions are highest under La Niña conditions, especially in California; and the risk of brownouts may be higher under neutral and negative ENSO conditions. These results help characterize the grid’s performance under historical climate variations, are useful for seasonal and multiyear planning of joint water–electricity management, and can be used to support impact, adaptation, and vulnerability analyses.

Open access
Howard J. Diamond, Thomas R. Karl, Michael A. Palecki, C. Bruce Baker, Jesse E. Bell, Ronald D. Leeper, David R. Easterling, Jay H. Lawrimore, Tilden P. Meyers, Michael R. Helfert, Grant Goodge, and Peter W. Thorne

The year 2012 marks a decade of observations undertaken by the U.S. Climate Reference Network (USCRN) under the auspices of NOAA's National Climatic Data Center and Atmospheric Turbulence and Diffusion Division. The network consists of 114 sites across the conterminous 48 states, with additional sites in Alaska and Hawaii. Stations are installed in open (where possible), rural sites very likely to have stable land-cover/use conditions for several decades to come. At each site a suite of meteorological parameters are monitored, including triple redundancy for the primary air temperature and precipitation variables and for soil moisture/temperature. Instrumentation is regularly calibrated to National Institute for Standards and Technology (NIST) standards and maintained by a staff of expert engineers. This attention to detail in USCRN is intended to ensure the creation of an unimpeachable record of changes in surface climate over the United States for decades to come. Data are made available without restriction for all public, private, and government use. This article describes the rationale for the USCRN, its implementation, and some of the highlights of the first decade of operations. One critical use of these observations is as an independent data source to verify the existing U.S. temperature record derived from networks corrected for nonhomogenous histories. Future directions for the network are also discussed, including the applicability of USCRN approaches for networks monitoring climate at scales from regional to global. Constructive feedback from end users will allow for continued improvement of USCRN in the future and ensure that it continues to meet stakeholder requirements for precise climate measurements.

Full access
Volker Wulfmeyer, David D. Turner, B. Baker, R. Banta, A. Behrendt, T. Bonin, W. A. Brewer, M. Buban, A. Choukulkar, E. Dumas, R. M. Hardesty, T. Heus, J. Ingwersen, D. Lange, T. R. Lee, S. Metzendorf, S. K. Muppa, T. Meyers, R. Newsom, M. Osman, S. Raasch, J. Santanello, C. Senff, F. Späth, T. Wagner, and T. Weckwerth

Abstract

Forecast errors with respect to wind, temperature, moisture, clouds, and precipitation largely correspond to the limited capability of current Earth system models to capture and simulate land–atmosphere feedback. To facilitate its realistic simulation in next-generation models, an improved process understanding of the related complex interactions is essential. To this end, accurate 3D observations of key variables in the land–atmosphere (L–A) system with high vertical and temporal resolution from the surface to the free troposphere are indispensable.

Recently, we developed a synergy of innovative ground-based, scanning active remote sensing systems for 2D to 3D measurements of wind, temperature, and water vapor from the surface to the lower troposphere that is able to provide comprehensive datasets for characterizing L–A feedback independently of any model input. Several new applications are introduced, such as the mapping of surface momentum, sensible heat, and latent heat fluxes in heterogeneous terrain; the testing of Monin–Obukhov similarity theory and turbulence parameterizations; the direct measurement of entrainment fluxes; and the development of new flux-gradient relationships. An experimental design taking advantage of the sensors’ synergy and advanced capabilities was realized for the first time during the Land Atmosphere Feedback Experiment (LAFE), conducted at the Atmospheric Radiation Measurement Program Southern Great Plains site in August 2017. The scientific goals and the strategy of achieving them with the LAFE dataset are introduced. We envision the initiation of innovative L–A feedback studies in different climate regions to improve weather forecast, climate, and Earth system models worldwide.

Open access
A. K. Pavlov, A. Meyer, A. Rösel, L. Cohen, J. King, P. Itkin, J. Negrel, S. Gerland, S. R. Hudson, P. A. Dodd, L. de Steur, S. Mathisen, N. Cobbing, and M. A. Granskog

Abstract

Effective science communication is essential to share knowledge and recruit the next generation of researchers. Science communication to the general public can, however, be hampered by limited resources and a lack of incentives in the academic environment. Various social media platforms have recently emerged, providing free and simple science communication tools to reach the public and young people especially, an audience often missed by more conventional outreach initiatives. While individual researchers and large institutions are present on social media, smaller research groups are underrepresented. As a small group of oceanographers, sea ice scientists, and atmospheric scientists at the Norwegian Polar Institute, we share our experience establishing, developing, and maintaining a successful Arctic science communication initiative (@oceanseaicenpi) on Instagram, Twitter, and Facebook. The initiative is run entirely by a team of researchers with limited time and financial resources. It has built a broad audience of more than 7,000 followers, half of which is associated with the team’s Instagram account. To our knowledge, @oceanseaicenpi is one of the most successful Earth sciences Instagram accounts managed by researchers. The initiative has boosted the alternative metric scores of our publications and helped participating researchers become better writers and communicators. We hope to inspire and help other research groups by providing some guidelines on how to develop and conduct effective science communication via social media.

Open access
R. H. Moss, S. Avery, K. Baja, M. Burkett, A. M. Chischilly, J. Dell, P. A. Fleming, K. Geil, K. Jacobs, A. Jones, K. Knowlton, J. Koh, M. C. Lemos, J. Melillo, R. Pandya, T. C. Richmond, L. Scarlett, J. Snyder, M. Stults, A. Waple, J. Whitehead, D. Zarrilli, J. Fox, A. Ganguly, L. Joppa, S. Julius, P. Kirshen, R. Kreutter, A. McGovern, R. Meyer, J. Neumann, W. Solecki, J. Smith, P. Tissot, G. Yohe, and R. Zimmerman
Open access
J. C. Doran, F. J. Barnes, R. L. Coulter, T. L. Crawford, D. D. Baldocchi, L. Balick, D. R. Cook, D. Cooper, R. J. Dobosy, W. A. Dugas, L. Fritschen, R. L. Hart, L. Hipps, J. M. Hubbe, W. Gao, R. Hicks, R. R. Kirkham, K. E. Kunkel, T. J. Martin, T. P. Meyers, W. Porch, J. D. Shannon, W. J. Shaw, E. Swiatek, and C. D. Whiteman

A field campaign was carried out near Boardman, Oregon, to study the effects of subgrid-scale variability of sensible- and latent-heat fluxes on surface boundary-layer properties. The experiment involved three U.S. Department of Energy laboratories, one National Oceanic and Atmospheric Administration laboratory, and several universities. The experiment was conducted in a region of severe contrasts in adjacent surface types that accentuated the response of the atmosphere to variable surface forcing. Large values of sensible-heat flux and low values of latent-heat flux characterized a sagebrush steppe area; significantly smaller sensible-heat fluxes and much larger latent-heat fluxes were associated with extensive tracts of irrigated farmland to the north, east, and west of the steppe. Data were obtained from an array of surface flux stations, remote-sensing devices, an instrumented aircraft, and soil and vegetation measurements. The data will be used to address the problem of extrapolating from a limited number of local measurements to area-averaged values of fluxes suitable for use in global climate models.

Full access
Brian J. Butterworth, Ankur R. Desai, Stefan Metzger, Philip A. Townsend, Mark D. Schwartz, Grant W. Petty, Matthias Mauder, Hannes Vogelmann, Christian G. Andresen, Travis J. Augustine, Timothy H. Bertram, William O. J. Brown, Michael Buban, Patricia Cleary, David J. Durden, Christopher R. Florian, Trevor J. Iglinski, Eric L. Kruger, Kathleen Lantz, Temple R. Lee, Tilden P. Meyers, James K. Mineau, Erik R. Olson, Steven P. Oncley, Sreenath Paleri, Rosalyn A. Pertzborn, Claire Pettersen, David M. Plummer, Laura D. Riihimaki, Eliceo Ruiz Guzman, Joseph Sedlar, Elizabeth N. Smith, Johannes Speidel, Paul C. Stoy, Matthias Sühring, Jonathan E. Thom, David D. Turner, Michael P. Vermeuel, Timothy J. Wagner, Zhien Wang, Luise Wanner, Loren D. White, James M. Wilczak, Daniel B. Wright, and Ting Zheng

Abstract

The Chequamegon Heterogeneous Ecosystem Energy-Balance Study Enabled by a High-Density Extensive Array of Detectors 2019 (CHEESEHEAD19) is an ongoing National Science Foundation project based on an intensive field campaign that occurred from June to October 2019. The purpose of the study is to examine how the atmospheric boundary layer (ABL) responds to spatial heterogeneity in surface energy fluxes. One of the main objectives is to test whether lack of energy balance closure measured by eddy covariance (EC) towers is related to mesoscale atmospheric processes. Finally, the project evaluates data-driven methods for scaling surface energy fluxes, with the aim to improve model–data comparison and integration. To address these questions, an extensive suite of ground, tower, profiling, and airborne instrumentation was deployed over a 10 km × 10 km domain of a heterogeneous forest ecosystem in the Chequamegon–Nicolet National Forest in northern Wisconsin, United States, centered on an existing 447-m tower that anchors an AmeriFlux/NOAA supersite (US-PFa/WLEF). The project deployed one of the world’s highest-density networks of above-canopy EC measurements of surface energy fluxes. This tower EC network was coupled with spatial measurements of EC fluxes from aircraft; maps of leaf and canopy properties derived from airborne spectroscopy, ground-based measurements of plant productivity, phenology, and physiology; and atmospheric profiles of wind, water vapor, and temperature using radar, sodar, lidar, microwave radiometers, infrared interferometers, and radiosondes. These observations are being used with large-eddy simulation and scaling experiments to better understand submesoscale processes and improve formulations of subgrid-scale processes in numerical weather and climate models.

Open access
Dennis Baldocchi, Eva Falge, Lianhong Gu, Richard Olson, David Hollinger, Steve Running, Peter Anthoni, Ch. Bernhofer, Kenneth Davis, Robert Evans, Jose Fuentes, Allen Goldstein, Gabriel Katul, Beverly Law, Xuhui Lee, Yadvinder Malhi, Tilden Meyers, William Munger, Walt Oechel, K. T. Paw U, Kim Pilegaard, H. P. Schmid, Riccardo Valentini, Shashi Verma, Timo Vesala, Kell Wilson, and Steve Wofsy

FLUXNET is a global network of micrometeorological flux measurement sites that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on a long-term and continuous basis. Vegetation under study includes temperate conifer and broadleaved (deciduous and evergreen) forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands, and tundra. Sites exist on five continents and their latitudinal distribution ranges from 70°N to 30°S.

FLUXNET has several primary functions. First, it provides infrastructure for compiling, archiving, and distributing carbon, water, and energy flux measurement, and meteorological, plant, and soil data to the science community. (Data and site information are available online at the FLUXNET Web site, http://www-eosdis.ornl.gov/FLUXNET/.) Second, the project supports calibration and flux intercomparison activities. This activity ensures that data from the regional networks are intercomparable. And third, FLUXNET supports the synthesis, discussion, and communication of ideas and data by supporting project scientists, workshops, and visiting scientists. The overarching goal is to provide information for validating computations of net primary productivity, evaporation, and energy absorption that are being generated by sensors mounted on the NASA Terra satellite.

Data being compiled by FLUXNET are being used to quantify and compare magnitudes and dynamics of annual ecosystem carbon and water balances, to quantify the response of stand-scale carbon dioxide and water vapor flux densities to controlling biotic and abiotic factors, and to validate a hierarchy of soil–plant–atmosphere trace gas exchange models. Findings so far include 1) net CO2 exchange of temperate broadleaved forests increases by about 5.7 g C m−2 day−1 for each additional day that the growing season is extended; 2) the sensitivity of net ecosystem CO2 exchange to sunlight doubles if the sky is cloudy rather than clear; 3) the spectrum of CO2 flux density exhibits peaks at timescales of days, weeks, and years, and a spectral gap exists at the month timescale; 4) the optimal temperature of net CO2 exchange varies with mean summer temperature; and 5) stand age affects carbon dioxide and water vapor flux densities.

Full access