Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Richard Essery x
  • Journal of Hydrometeorology x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Richard Essery
and
John Pomeroy

Abstract

A finescale model of blowing snow is used to simulate the characteristics of snow cover in a low-Arctic catchment with moderate topography and partial shrub cover. The influence of changing shrub characteristics is investigated by performing a sequence of simulations with varying shrub heights and coverage. Increasing shrub height gives an increase in snow depth within the shrub-covered areas, up to a limit determined by the supply of falling and blowing snow, but increasing shrub coverage gives a decrease in snow depths within shrubs as the supply of blowing snow imported from open areas is reduced. A simulation of snow redistribution over the existing topography without any shrub cover gives much greater accumulations of snow on slopes in the lee of the prevailing wind than on windward slopes; in contrast, shrubs are able to trap snow on both lee and windward slopes. A spatially aggregated, or tiled, model is developed in which snow is relocated by wind transport from sparsely vegetated tiles to more densely vegetated tiles. The vegetation distribution is not specified, but the simulation is parameterized using average fetch lengths along the major transport axis. The aggregated model is found to be capable of matching the average snow accumulation in shrub and open areas predicted by the distributed model reasonably well but with much less computational cost.

Full access
Jean Emmanuel Sicart
,
Richard L. H. Essery
,
John W. Pomeroy
,
Janet Hardy
,
Timothy Link
, and
Danny Marks

Abstract

This study investigates the dependence of net radiation at snow surfaces under forest canopies on the overlying canopy density. The daily sum of positive values of net radiation is used as an index of the snowmelt rate. Canopy cover is represented in terms of shortwave transmissivity and sky-view factor. The cases studied are a spruce forest in the Wolf Creek basin, Yukon Territory, Canada, and a pine forest near Fraser, Colorado. Of particular interest are the atmospheric conditions that favor an offset between shortwave energy attenuation and longwave irradiance enhancement by the canopy, such that net radiation does not decrease with increasing forest density. Such an offset is favored in dry climates and at high altitudes, where atmospheric emissivities are low, and in early spring when snow albedos are high and solar elevations are low. For low snow albedos, a steady decrease in snowmelt energy with increasing canopy cover is found, up to a forest density close to the actual densities of mature spruce forests. Snowmelt rates for high albedos are either insensitive or increase with increasing canopy cover. At both sites, foliage area indices close to 2 are associated with a minimum in net radiation, independent of snow albedo or cloud cover. However, these results are more uncertain for open forests because solar heating of trees may invalidate the longwave assumptions, increasing the longwave irradiance.

Full access
Richard Essery
,
Peter Bunting
,
Aled Rowlands
,
Nick Rutter
,
Janet Hardy
,
Rae Melloh
,
Tim Link
,
Danny Marks
, and
John Pomeroy

Abstract

Solar radiation beneath a forest canopy can have large spatial variations, but this is frequently neglected in radiative transfer models for large-scale applications. To explicitly model spatial variations in subcanopy radiation, maps of canopy structure are required. Aerial photography and airborne laser scanning are used to map tree locations, heights, and crown diameters for a lodgepole pine forest in Colorado as inputs to a spatially explicit radiative transfer model. Statistics of subcanopy radiation simulated by the model are compared with measurements from radiometer arrays, and scaling of spatial statistics with temporal averaging and array size is discussed. Efficient parameterizations for spatial averages and standard deviations of subcanopy radiation are developed using parameters that can be obtained from the model or hemispherical photography.

Full access
John Pomeroy
,
Chad Ellis
,
Aled Rowlands
,
Richard Essery
,
Janet Hardy
,
Tim Link
,
Danny Marks
, and
Jean Emmanuel Sicart

Abstract

The spatial variation of melt energy can influence snow cover depletion rates and in turn be influenced by the spatial variability of shortwave irradiance to snow. The spatial variability of shortwave irradiance during melt under uniform and discontinuous evergreen canopies at a U.S. Rocky Mountains site was measured, analyzed, and then compared to observations from mountain and boreal forests in Canada. All observations used arrays of pyranometers randomly spaced under evergreen canopies of varying structure and latitude. The spatial variability of irradiance for both overcast and clear conditions declined dramatically, as the sample averaging interval increased from minutes to 1 day. At daily averaging intervals, there was little influence of cloudiness on the variability of subcanopy irradiance; instead, it was dominated by stand structure. The spatial variability of irradiance on daily intervals was higher for the discontinuous canopies, but it did not scale reliably with canopy sky view. The spatial variation in irradiance resulted in a coefficient of variation of melt energy of 0.23 for the set of U.S. and Canadian stands. This variability in melt energy smoothed the snow-covered area depletion curve in a distributed melt simulation, thereby lengthening the duration of melt by 20%. This is consistent with observed natural snow cover depletion curves and shows that variations in melt energy and snow accumulation can influence snow-covered area depletion under forest canopies.

Full access