Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Rick Lader x
  • Journal of Climate x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
John E. Walsh
,
Peter A. Bieniek
,
Brian Brettschneider
,
Eugénie S. Euskirchen
,
Rick Lader
, and
Richard L. Thoman

Abstract

Alaska experienced record-setting warmth during the 2015/16 cold season (October–April). Statewide average temperatures exceeded the period-of-record mean by more than 4°C over the 7-month cold season and by more than 6°C over the 4-month late-winter period, January–April. The record warmth raises two questions: 1) Why was Alaska so warm during the 2015/16 cold season? 2) At what point in the future might this warmth become typical if greenhouse warming continues? On the basis of circulation analogs computed from sea level pressure and 850-hPa geopotential height fields, the atmospheric circulation explains less than half of the anomalous warmth. The warming signal forced by greenhouse gases in climate models accounts for about 1°C of the anomalous warmth. A factor that is consistent with the seasonal and spatial patterns of the warmth is the anomalous surface state. The surface anomalies include 1) above-normal ocean surface temperatures and below-normal sea ice coverage in the surrounding seas from which air advects into Alaska and 2) the deficient snowpack over Alaska itself. The location of the maximum of anomalous warmth over Alaska and the late-winter–early-spring increase of the anomalous warmth unexplained by the atmospheric circulation implicates snow cover and its albedo effect, which is supported by observational measurements in the boreal forest and tundra biomes. Climate model simulations indicate that warmth of this magnitude will become the norm by the 2050s if greenhouse gas emissions follow their present scenario.

Full access
Thomas J. Ballinger
,
Uma S. Bhatt
,
Peter A. Bieniek
,
Brian Brettschneider
,
Rick T. Lader
,
Jeremy S. Littell
,
Richard L. Thoman
,
Christine F. Waigl
,
John E. Walsh
, and
Melinda A. Webster

Abstract

Some of the largest climatic changes in the Arctic have been observed in Alaska and the surrounding marginal seas. Near-surface air temperature (T2m), precipitation (P), snowfall, and sea ice changes have been previously documented, often in disparate studies. Here, we provide an updated, long-term trend analysis (1957–2021; n = 65 years) of such parameters in ERA5, NOAA U.S. Climate Gridded Dataset (NClimGrid), NOAA National Centers for Environmental Information (NCEI) Alaska climate division, and composite sea ice products preceding the upcoming Fifth National Climate Assessment (NCA5) and other near-future climate reports. In the past half century, annual T2m has broadly increased across Alaska, and during winter, spring, and autumn on the North Slope and North Panhandle (T2m > 0.50°C decade−1). Precipitation has also increased across climate divisions and appears strongly interrelated with temperature–sea ice feedbacks on the North Slope, specifically with increased (decreased) open water (sea ice extent). Snowfall equivalent (SFE) has decreased in autumn and spring, perhaps aligned with a regime transition of snow to rain, while winter SFE has broadly increased across the state. Sea ice decline and melt-season lengthening also have a pronounced signal around Alaska, with the largest trends in these parameters found in the Beaufort Sea. Alaska’s climatic changes are also placed in context against regional and contiguous U.S. air temperature trends and show ∼50% greater warming in Alaska relative to the lower-48 states. Alaska T2m increases also exceed those of any contiguous U.S. subregion, positioning Alaska at the forefront of U.S. climate warming.

Significance Statement

This study produces an updated, long-term trend analysis (1957–2021) of key Alaska climate parameters, including air temperature, precipitation (including snowfall equivalent), and sea ice, to inform upcoming climate assessment reports, including the Fifth National Climate Assessment (NCA5) scheduled for publication in 2023. Key findings include widespread annual and seasonal warming with increased precipitation across much of the state. Winter snowfall has broadly increased, but spring and autumn snowfalls have decreased as rainfall increased. Autumn warming and precipitation increases over the North Slope, in particular, appear related to decreased sea ice coverage in the Beaufort Sea and Chukchi Seas. These trends may result from interrelated processes that accelerate Alaska climate changes relative to those of the contiguous United States.

Open access