Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Rong Zhang x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Gabriel A. Vecchi
,
Rym Msadek
,
Whit Anderson
,
You-Soon Chang
,
Thomas Delworth
,
Keith Dixon
,
Rich Gudgel
,
Anthony Rosati
,
Bill Stern
,
Gabriele Villarini
,
Andrew Wittenberg
,
Xiaosong Yang
,
Fanrong Zeng
,
Rong Zhang
, and
Shaoqing Zhang
Full access
Gabriel A. Vecchi
,
Rym Msadek
,
Whit Anderson
,
You-Soon Chang
,
Thomas Delworth
,
Keith Dixon
,
Rich Gudgel
,
Anthony Rosati
,
Bill Stern
,
Gabriele Villarini
,
Andrew Wittenberg
,
Xiasong Yang
,
Fanrong Zeng
,
Rong Zhang
, and
Shaoqing Zhang

Abstract

Retrospective predictions of multiyear North Atlantic Ocean hurricane frequency are explored by applying a hybrid statistical–dynamical forecast system to initialized and noninitialized multiyear forecasts of tropical Atlantic and tropical-mean sea surface temperatures (SSTs) from two global climate model forecast systems. By accounting for impacts of initialization and radiative forcing, retrospective predictions of 5- and 9-yr mean tropical Atlantic hurricane frequency show significant correlations relative to a null hypothesis of zero correlation. The retrospective correlations are increased in a two-model average forecast and by using a lagged-ensemble approach, with the two-model ensemble decadal forecasts of hurricane frequency over 1961–2011 yielding correlation coefficients that approach 0.9. These encouraging retrospective multiyear hurricane predictions, however, should be interpreted with care: although initialized forecasts have higher nominal skill than uninitialized ones, the relatively short record and large autocorrelation of the time series limits confidence in distinguishing between the skill caused by external forcing and that added by initialization. The nominal increase in correlation in the initialized forecasts relative to the uninitialized experiments is caused by improved representation of the multiyear tropical Atlantic SST anomalies. The skill in the initialized forecasts comes in large part from the persistence of a mid-1990s shift by the initialized forecasts, rather than from predicting its evolution. Predicting shifts like that observed in 1994/95 remains a critical issue for the success of multiyear forecasts of Atlantic hurricane frequency. The retrospective forecasts highlight the possibility that changes in observing system impact forecast performance.

Full access
Gabriel A. Vecchi
,
Rym Msadek
,
Whit Anderson
,
You-Soon Chang
,
Thomas Delworth
,
Keith Dixon
,
Rich Gudgel
,
Anthony Rosati
,
Bill Stern
,
Gabriele Villarini
,
Andrew Wittenberg
,
Xiasong Yang
,
Fanrong Zeng
,
Rong Zhang
, and
Shaoqing Zhang
Full access
Justin Sheffield
,
Suzana J. Camargo
,
Rong Fu
,
Qi Hu
,
Xianan Jiang
,
Nathaniel Johnson
,
Kristopher B. Karnauskas
,
Seon Tae Kim
,
Jim Kinter
,
Sanjiv Kumar
,
Baird Langenbrunner
,
Eric Maloney
,
Annarita Mariotti
,
Joyce E. Meyerson
,
J. David Neelin
,
Sumant Nigam
,
Zaitao Pan
,
Alfredo Ruiz-Barradas
,
Richard Seager
,
Yolande L. Serra
,
De-Zheng Sun
,
Chunzai Wang
,
Shang-Ping Xie
,
Jin-Yi Yu
,
Tao Zhang
, and
Ming Zhao

Abstract

This is the second part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that evaluates the twentieth-century simulations of intraseasonal to multidecadal variability and teleconnections with North American climate. Overall, the multimodel ensemble does reasonably well at reproducing observed variability in several aspects, but it does less well at capturing observed teleconnections, with implications for future projections examined in part three of this paper. In terms of intraseasonal variability, almost half of the models examined can reproduce observed variability in the eastern Pacific and most models capture the midsummer drought over Central America. The multimodel mean replicates the density of traveling tropical synoptic-scale disturbances but with large spread among the models. On the other hand, the coarse resolution of the models means that tropical cyclone frequencies are underpredicted in the Atlantic and eastern North Pacific. The frequency and mean amplitude of ENSO are generally well reproduced, although teleconnections with North American climate are widely varying among models and only a few models can reproduce the east and central Pacific types of ENSO and connections with U.S. winter temperatures. The models capture the spatial pattern of Pacific decadal oscillation (PDO) variability and its influence on continental temperature and West Coast precipitation but less well for the wintertime precipitation. The spatial representation of the Atlantic multidecadal oscillation (AMO) is reasonable, but the magnitude of SST anomalies and teleconnections are poorly reproduced. Multidecadal trends such as the warming hole over the central–southeastern United States and precipitation increases are not replicated by the models, suggesting that observed changes are linked to natural variability.

Full access