Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: Rong Zhang x
- Bulletin of the American Meteorological Society x
- Refine by Access: Content accessible to me x
Abstract
Over the last two decades, the Central Weather Bureau of Taiwan and the U.S. National Severe Storms Laboratory have been involved in a research and development collaboration to improve the monitoring and prediction of river flooding, flash floods, debris flows, and severe storms for Taiwan. The collaboration resulted in the Quantitative Precipitation Estimation and Segregation Using Multiple Sensors (QPESUMS) system. The QPESUMS system integrates observations from multiple mixed-band weather radars, rain gauges, and numerical weather prediction model fields to produce high-resolution (1 km) and rapid-update (10 min) rainfall and severe storm monitoring and prediction products. The rainfall products are widely used by government agencies and emergency managers in Taiwan for flood and mudslide warnings as well as for water resource management. The 3D reflectivity mosaic and QPE products are also used in high-resolution radar data assimilation and for the verification of numerical weather prediction model forecasts. The system facilitated collaborations with academic communities for research and development of radar applications, including quantitative precipitation estimation and nowcasting. This paper provides an overview of the operational QPE capabilities in the Taiwan QPESUMS system.
Abstract
Over the last two decades, the Central Weather Bureau of Taiwan and the U.S. National Severe Storms Laboratory have been involved in a research and development collaboration to improve the monitoring and prediction of river flooding, flash floods, debris flows, and severe storms for Taiwan. The collaboration resulted in the Quantitative Precipitation Estimation and Segregation Using Multiple Sensors (QPESUMS) system. The QPESUMS system integrates observations from multiple mixed-band weather radars, rain gauges, and numerical weather prediction model fields to produce high-resolution (1 km) and rapid-update (10 min) rainfall and severe storm monitoring and prediction products. The rainfall products are widely used by government agencies and emergency managers in Taiwan for flood and mudslide warnings as well as for water resource management. The 3D reflectivity mosaic and QPE products are also used in high-resolution radar data assimilation and for the verification of numerical weather prediction model forecasts. The system facilitated collaborations with academic communities for research and development of radar applications, including quantitative precipitation estimation and nowcasting. This paper provides an overview of the operational QPE capabilities in the Taiwan QPESUMS system.
Abstract
Monsoon rainfall has profound economic and societal impacts for more than two-thirds of the global population. Here we provide a review on past monsoon changes and their primary drivers, the projected future changes, and key physical processes, and discuss challenges of the present and future modeling and outlooks. Continued global warming and urbanization over the past century has already caused a significant rise in the intensity and frequency of extreme rainfall events in all monsoon regions (high confidence). Observed changes in the mean monsoon rainfall vary by region with significant decadal variations. Northern Hemisphere land monsoon rainfall as a whole declined from 1950 to 1980 and rebounded after the 1980s, due to the competing influences of internal climate variability and radiative forcing from greenhouse gases and aerosol forcing (high confidence); however, it remains a challenge to quantify their relative contributions. The CMIP6 models simulate better global monsoon intensity and precipitation over CMIP5 models, but common biases and large intermodal spreads persist. Nevertheless, there is high confidence that the frequency and intensity of monsoon extreme rainfall events will increase, alongside an increasing risk of drought over some regions. Also, land monsoon rainfall will increase in South Asia and East Asia (high confidence) and northern Africa (medium confidence), decrease in North America, and be unchanged in the Southern Hemisphere. Over the Asian–Australian monsoon region, the rainfall variability is projected to increase on daily to decadal scales. The rainy season will likely be lengthened in the Northern Hemisphere due to late retreat (especially over East Asia), but shortened in the Southern Hemisphere due to delayed onset.
Abstract
Monsoon rainfall has profound economic and societal impacts for more than two-thirds of the global population. Here we provide a review on past monsoon changes and their primary drivers, the projected future changes, and key physical processes, and discuss challenges of the present and future modeling and outlooks. Continued global warming and urbanization over the past century has already caused a significant rise in the intensity and frequency of extreme rainfall events in all monsoon regions (high confidence). Observed changes in the mean monsoon rainfall vary by region with significant decadal variations. Northern Hemisphere land monsoon rainfall as a whole declined from 1950 to 1980 and rebounded after the 1980s, due to the competing influences of internal climate variability and radiative forcing from greenhouse gases and aerosol forcing (high confidence); however, it remains a challenge to quantify their relative contributions. The CMIP6 models simulate better global monsoon intensity and precipitation over CMIP5 models, but common biases and large intermodal spreads persist. Nevertheless, there is high confidence that the frequency and intensity of monsoon extreme rainfall events will increase, alongside an increasing risk of drought over some regions. Also, land monsoon rainfall will increase in South Asia and East Asia (high confidence) and northern Africa (medium confidence), decrease in North America, and be unchanged in the Southern Hemisphere. Over the Asian–Australian monsoon region, the rainfall variability is projected to increase on daily to decadal scales. The rainy season will likely be lengthened in the Northern Hemisphere due to late retreat (especially over East Asia), but shortened in the Southern Hemisphere due to delayed onset.