Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: Rostislav D. Kouznetsov x
- Refine by Access: Content accessible to me x
Abstract
Continuous sodar measurements of wind profiles have been carried out at the Zvenigorod Scientific Station of the Obukhov Institute of Atmospheric Physics since 2008. The station is located in a slightly inhomogeneous rural area about 45 km west of Moscow, Russia. The data were used to determine the parameters of wind and turbulence within low-level jets in the stable atmospheric boundary layer (ABL). Along with the mean velocity profiles, the profiles of variances of wind speed components from the sodar and the profiles of temperature from a microwave radiometer have been used to quantify turbulence and thermal stratification. Data from two sonic anemometers were used to get the near-surface parameters.
The typical standard deviation of the vertical wind component σw within the low-level jet is about 5% of the maximum wind speed in the jet. No noticeable vertical variation of σw across the jets was detected in several earlier sodar campaigns, and it was not found in the present study. An increase in horizontal variances was detected in zones of substantial wind shear, which agrees with earlier published lidar data.
Quasi-periodic structures in the sodar return signal, which appear in sodar echograms as braid-shaped patterns, were found to emerge preferably when a substantial increase of wind shear occurs at the top of the stable ABL. The braid patterns in the sodar echograms were not accompanied by any noticeable increase of observed σw , which disagrees with earlier data and indicates that such patterns may originate from various phenomena.
Abstract
Continuous sodar measurements of wind profiles have been carried out at the Zvenigorod Scientific Station of the Obukhov Institute of Atmospheric Physics since 2008. The station is located in a slightly inhomogeneous rural area about 45 km west of Moscow, Russia. The data were used to determine the parameters of wind and turbulence within low-level jets in the stable atmospheric boundary layer (ABL). Along with the mean velocity profiles, the profiles of variances of wind speed components from the sodar and the profiles of temperature from a microwave radiometer have been used to quantify turbulence and thermal stratification. Data from two sonic anemometers were used to get the near-surface parameters.
The typical standard deviation of the vertical wind component σw within the low-level jet is about 5% of the maximum wind speed in the jet. No noticeable vertical variation of σw across the jets was detected in several earlier sodar campaigns, and it was not found in the present study. An increase in horizontal variances was detected in zones of substantial wind shear, which agrees with earlier published lidar data.
Quasi-periodic structures in the sodar return signal, which appear in sodar echograms as braid-shaped patterns, were found to emerge preferably when a substantial increase of wind shear occurs at the top of the stable ABL. The braid patterns in the sodar echograms were not accompanied by any noticeable increase of observed σw , which disagrees with earlier data and indicates that such patterns may originate from various phenomena.
Abstract
The Innovative Strategies for Observations in the Arctic Atmospheric Boundary Layer Program (ISOBAR) is a research project investigating stable atmospheric boundary layer (SBL) processes, whose representation still poses significant challenges in state-of-the-art numerical weather prediction (NWP) models. In ISOBAR ground-based flux and profile observations are combined with boundary layer remote sensing methods and the extensive usage of different unmanned aircraft systems (UAS). During February 2017 and 2018 we carried out two major field campaigns over the sea ice of the northern Baltic Sea, close to the Finnish island of Hailuoto at 65°N. In total 14 intensive observational periods (IOPs) resulted in extensive SBL datasets with unprecedented spatiotemporal resolution, which will form the basis for various numerical modeling experiments. First results from the campaigns indicate numerous very stable boundary layer (VSBL) cases, characterized by strong stratification, weak winds, and clear skies, and give detailed insight in the temporal evolution and vertical structure of the entire SBL. The SBL is subject to rapid changes in its vertical structure, responding to a variety of different processes. In particular, we study cases involving a shear instability associated with a low-level jet, a rapid strong cooling event observed a few meters above ground, and a strong wave-breaking event that triggers intensive near-surface turbulence. Furthermore, we use observations from one IOP to validate three different atmospheric models. The unique finescale observations resulting from the ISOBAR observational approach will aid future research activities, focusing on a better understanding of the SBL and its implementation in numerical models.
Abstract
The Innovative Strategies for Observations in the Arctic Atmospheric Boundary Layer Program (ISOBAR) is a research project investigating stable atmospheric boundary layer (SBL) processes, whose representation still poses significant challenges in state-of-the-art numerical weather prediction (NWP) models. In ISOBAR ground-based flux and profile observations are combined with boundary layer remote sensing methods and the extensive usage of different unmanned aircraft systems (UAS). During February 2017 and 2018 we carried out two major field campaigns over the sea ice of the northern Baltic Sea, close to the Finnish island of Hailuoto at 65°N. In total 14 intensive observational periods (IOPs) resulted in extensive SBL datasets with unprecedented spatiotemporal resolution, which will form the basis for various numerical modeling experiments. First results from the campaigns indicate numerous very stable boundary layer (VSBL) cases, characterized by strong stratification, weak winds, and clear skies, and give detailed insight in the temporal evolution and vertical structure of the entire SBL. The SBL is subject to rapid changes in its vertical structure, responding to a variety of different processes. In particular, we study cases involving a shear instability associated with a low-level jet, a rapid strong cooling event observed a few meters above ground, and a strong wave-breaking event that triggers intensive near-surface turbulence. Furthermore, we use observations from one IOP to validate three different atmospheric models. The unique finescale observations resulting from the ISOBAR observational approach will aid future research activities, focusing on a better understanding of the SBL and its implementation in numerical models.