Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: S. A. McFarlane x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
S. J. D. D’Alessio
,
K. Abdella
, and
N. A. McFarlane

Abstract

A new second-order turbulence closure scheme is proposed for the oceanic mixed layer. The scheme is similar in complexity to a Mellor–Yamada level 2.5 scheme in that the turbulent kinetic energy is the only turbulence quantity treated prognostically with the others determined diagnostically. The main difference lies in the treatment of the turbulent fluxes. While momentum fluxes are assumed to be downgradient, the other turbulent fluxes allow for nonlocal and countergradient contributions. The model was tested against several idealized forcing experiments for wind-deepening, heating and cooling cases, and also against observational data taken from Ocean Weather Stations November and Papa. The simulations reveal good agreement with other models. The present scheme also performs reasonably well in reproducing the observed sea surface temperature and boundary layer depth for the year 1961 at stations November and Papa. Also proposed are ways of incorporating near-surface processes such as Langmuir circulation and wave breaking. Simulations have shown that wave breaking leads to negligible deepening of the mixed layer, while the inclusion of Langmuir circulations causes further deepening to occur.

Full access
Faisal S. Boudala
,
George A. Isaac
,
N. A. McFarlane
, and
J. Li

Abstract

The sensitivity of the atmospheric radiation budget to ignoring small ice particles (D ≤ 100 μm) in parameterization of the mean effective size of ice particles was investigated by using the Canadian Centre for Climate Modelling and Analysis (CCCma) third-generation general atmospheric circulation model (AGCM3). The results indicate that small ice particles play two crucial roles in the radiative transfer that influence the simulated climate. First, they inhibit the IR radiation from escaping to space and, second, they enhance the scattering of solar radiation. On average, these two effects tend to partially cancel each other out. However, based on AGCM simulations, the small ice crystals make clouds more opaque to IR radiation. Generally, 5-yr seasonally averaged GCM results suggest that the strongest anomalies in outgoing longwave radiation (OLR) are found in the Tropics, reaching 15 to 25 W m−2 in areas where cold high cirrus anvil clouds are prevalent. The global average change in net cloud radiative forcing was 2.4 W m−2 in June–August (JJA) and 1.7 W m−2 in December–February (DJF). The change in globally averaged 5-yr mean cloud forcing was close to 1.9 W m−2. When the small particles were included, the globally averaged 5-yr mean precipitation decreased by about 8%, but cloudiness increased only slightly (by 2%). The 5-yr averaged global mean surface (screen) temperature also increased slightly (about 0.2°C) when the small ice particles were included.

Full access
A. Protat
,
S. A. Young
,
S. A. McFarlane
,
T. L’Ecuyer
,
G. G. Mace
,
J. M. Comstock
,
C. N. Long
,
E. Berry
, and
J. Delanoë

Abstract

The objective of this paper is to investigate whether estimates of the cloud frequency of occurrence and associated cloud radiative forcing as derived from ground-based and satellite active remote sensing and radiative transfer calculations can be reconciled over a well-instrumented active remote sensing site located in Darwin, Australia, despite the very different viewing geometry and instrument characteristics. It is found that the ground-based radar–lidar combination at Darwin does not detect most of the cirrus clouds above 10 km (because of limited lidar detection capability and signal obscuration by low-level clouds) and that the CloudSat radar–Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) combination underreports the hydrometeor frequency of occurrence below 2-km height because of instrument limitations at these heights. The radiative impact associated with these differences in cloud frequency of occurrence is large on the surface downwelling shortwave fluxes (ground and satellite) and the top-of-atmosphere upwelling shortwave and longwave fluxes (ground). Good agreement is found for other radiative fluxes. Large differences in radiative heating rate as derived from ground and satellite radar–lidar instruments and radiative transfer calculations are also found above 10 km (up to 0.35 K day−1 for the shortwave and 0.8 K day−1 for the longwave). Given that the ground-based and satellite estimates of cloud frequency of occurrence and radiative impact cannot be fully reconciled over Darwin, caution should be exercised when evaluating the representation of clouds and cloud–radiation interactions in large-scale models, and limitations of each set of instrumentation should be considered when interpreting model–observation differences.

Full access
C. N. Long
,
S. A. McFarlane
,
A. Del Genio
,
P. Minnis
,
T. P. Ackerman
,
J. Mather
,
J. Comstock
,
G. G. Mace
,
M. Jensen
, and
C. Jakob

The tropical western Pacific (TWP) is an important climatic region. Strong solar heating, warm sea surface temperatures, and the annual progression of the intertropical convergence zone (ITCZ) across this region generate abundant convective systems, which through their effects on the heat and water budgets have a profound impact on global climate and precipitation. In order to accurately evaluate tropical cloud systems in models, measurements of tropical clouds, the environment in which they reside, and their impact on the radiation and water budgets are needed. Because of the remote location, ground-based datasets of cloud, atmosphere, and radiation properties from the TWP region have come primarily from shortterm field experiments. While providing extremely useful information on physical processes, these short-term datasets are limited in statistical and climatological information. To provide longterm measurements of the surface radiation budget in the tropics and the atmospheric properties that affect it, the Atmospheric Radiation Measurement program established a measurement site on Manus Island, Papua New Guinea, in 1996 and on the island republic of Nauru in late 1998. These sites provide unique datasets now available for more than 10 years on Manus and Nauru. This article presents examples of the scientific use of these datasets including characterization of cloud properties, analysis of cloud radiative forcing, model studies of tropical clouds and processes, and validation of satellite algorithms. New instrumentation recently installed at the Manus site will provide expanded opportunities for tropical atmospheric science.

Full access
D. D. Turner
,
A. M. Vogelmann
,
R. T. Austin
,
J. C. Barnard
,
K. Cady-Pereira
,
J. C. Chiu
,
S. A. Clough
,
C. Flynn
,
M. M. Khaiyer
,
J. Liljegren
,
K. Johnson
,
B. Lin
,
C. Long
,
A. Marshak
,
S. Y. Matrosov
,
S. A. McFarlane
,
M. Miller
,
Q. Min
,
P. Minimis
,
W. O'Hirok
,
Z. Wang
, and
W. Wiscombe

Many of the clouds important to the Earth's energy balance, from the Tropics to the Arctic, contain small amounts of liquid water. Longwave and shortwave radiative fluxes are very sensitive to small perturbations of the cloud liquid water path (LWP), when the LWP is small (i.e., < 100 g m−2; clouds with LWP less than this threshold will be referred to as “thin”). Thus, the radiative properties of these thin liquid water clouds must be well understood to capture them correctly in climate models. We review the importance of these thin clouds to the Earth's energy balance, and explain the difficulties in observing them. In particular, because these clouds are thin, potentially mixed phase, and often broken (i.e., have large 3D variability), it is challenging to retrieve their microphysical properties accurately. We describe a retrieval algorithm intercomparison that was conducted to evaluate the issues involved. The intercomparison used data collected at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site and included 18 different algorithms to evaluate their retrieved LWP, optical depth, and effective radii. Surprisingly, evaluation of the simplest case, a single-layer overcast stratocumulus, revealed that huge discrepancies exist among the various techniques, even among different algorithms that are in the same general classification. This suggests that, despite considerable advances that have occurred in the field, much more work must be done, and we discuss potential avenues for future research.)

Full access
S. Pawson
,
K. Kodera
,
K. Hamilton
,
T. G. Shepherd
,
S. R. Beagley
,
B. A. Boville
,
J. D. Farrara
,
T. D. A. Fairlie
,
A. Kitoh
,
W. A. Lahoz
,
U. Langematz
,
E. Manzini
,
D. H. Rind
,
A. A. Scaife
,
K. Shibata
,
P. Simon
,
R. Swinbank
,
L. Takacs
,
R. J. Wilson
,
J. A. Al-Saadi
,
M. Amodei
,
M. Chiba
,
L. Coy
,
J. de Grandpré
,
R. S. Eckman
,
M. Fiorino
,
W. L. Grose
,
H. Koide
,
J. N. Koshyk
,
D. Li
,
J. Lerner
,
J. D. Mahlman
,
N. A. McFarlane
,
C. R. Mechoso
,
A. Molod
,
A. O'Neill
,
R. B. Pierce
,
W. J. Randel
,
R. B. Rood
, and
F. Wu

To investigate the effects of the middle atmosphere on climate, the World Climate Research Programme is supporting the project “Stratospheric Processes and their Role in Climate” (SPARC). A central theme of SPARC, to examine model simulations of the coupled troposphere–middle atmosphere system, is being performed through the initiative called GRIPS (GCM-Reality Intercomparison Project for SPARC). In this paper, an overview of the objectives of GRIPS is given. Initial activities include an assessment of the performance of middle atmosphere climate models, and preliminary results from this evaluation are presented here. It is shown that although all 13 models evaluated represent most major features of the mean atmospheric state, there are deficiencies in the magnitude and location of the features, which cannot easily be traced to the formulation (resolution or the parameterizations included) of the models. Most models show a cold bias in all locations, apart from the tropical tropopause region where they can be either too warm or too cold. The strengths and locations of the major jets are often misrepresented in the models. Looking at three-dimensional fields reveals, for some models, more severe deficiencies in the magnitude and positioning of the dominant structures (such as the Aleutian high in the stratosphere), although undersampling might explain some of these differences from observations. All the models have shortcomings in their simulations of the present-day climate, which might limit the accuracy of predictions of the climate response to ozone change and other anomalous forcing.

Full access
Andrew M. Vogelmann
,
Greg M. McFarquhar
,
John A. Ogren
,
David D. Turner
,
Jennifer M. Comstock
,
Graham Feingold
,
Charles N. Long
,
Haflidi H. Jonsson
,
Anthony Bucholtz
,
Don R. Collins
,
Glenn S. Diskin
,
Hermann Gerber
,
R. Paul Lawson
,
Roy K. Woods
,
Elisabeth Andrews
,
Hee-Jung Yang
,
J. Christine Chiu
,
Daniel Hartsock
,
John M. Hubbe
,
Chaomei Lo
,
Alexander Marshak
,
Justin W. Monroe
,
Sally A. McFarlane
,
Beat Schmid
,
Jason M. Tomlinson
, and
Tami Toto

A first-of-a-kind, extended-term cloud aircraft campaign was conducted to obtain an in situ statistical characterization of continental boundary layer clouds needed to investigate cloud processes and refine retrieval algorithms. Coordinated by the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign operated over the ARM Southern Great Plains (SGP) site from 22 January to 30 June 2009, collecting 260 h of data during 59 research flights. A comprehensive payload aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft measured cloud microphysics, solar and thermal radiation, physical aerosol properties, and atmospheric state parameters. Proximity to the SGP's extensive complement of surface measurements provides ancillary data that support modeling studies and facilitates evaluation of a variety of surface retrieval algorithms. The five-month duration enabled sampling a range of conditions associated with the seasonal transition from winter to summer. Although about twothirds of the flights during which clouds were sampled occurred in May and June, boundary layer cloud fields were sampled under a variety of environmental and aerosol conditions, with about 77% of the cloud flights occurring in cumulus and stratocumulus. Preliminary analyses illustrate use of these data to analyze aerosol– cloud relationships, characterize the horizontal variability of cloud radiative impacts, and evaluate surface-based retrievals. We discuss how an extended-term campaign requires a simplified operating paradigm that is different from that used for typical, short-term, intensive aircraft field programs.

Full access