Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: S. Kang x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
K-M. Lau
,
P-J. Sheu
, and
I-S. Kang

Abstract

In this paper, fundamental multiscale circulation modes in the global atmosphere are identified with the objective of providing better understanding of atmospheric low-frequency variabilities over a wide range of spatial and temporal scales. With the use of a combination of rotated principal component technique, singular spectrum analysis, and phase space portraits, three categories of basic multiscale modes in the atmosphere are found. The first is the interannual mode (IAM), which is dominated by time scales longer than a year and can be attributed to heating and circulation anomalies associated with the coupled tropical ocean-atmosphere, in particular the E1 Niño–Southern Oscillation. The second is a set of tropical intraseasonal modes consisting of three separate multiscale patterns (ISO-1, -2, -3) related to tropical heating that can be identified with the different phases of the Madden–Julian Oscillation (MJO), including its teleconnection to the extratropics. The ISO spatial and temporal patterns suggest that the extratropical wave train in the North Pacific and North America is related to heating over the Maritime Continent and that the evolution of the MJO around the equator may require forcing from the extratropics spawning convection over the Indian Ocean. The third category represents extratropical intraseasonal oscillations arising from internal dynamics of the basic-state circulation. In the Northern Hemisphere, there are two distinct circulation modes with multiple frequencies in this category: the Pacific/North America (PNA) and the North Atlantic/Eurasia (NAE). In the Southern Hemisphere, two phase-locked modes (PSA-1 and PSA-2) are found depicting an eastward propagating wave train from eastern Australia, via the Pacific South America to the South Atlantic. The extratropical modes exhibit temporal characteristics such as phase locking and harmonic oscillations possibly associated with quadratically nonlinear dynamical systems.

Additionally, the observed monthly and seasonal anomalies arise from a complex interplay of the various multiscale low-frequency modes. The relative dominance of the different modes varies widely from month to month and from year to year. On the monthly time scale, while one or two mechanisms may dominate in one year, no single mechanism seems to dominate for all years. There are indications that when the IAM, that is, ENSO heating patterns are strong, the extratropical modes may be suppressed and vice versa. For the seasonal mean, the interannual mode tends to dominate and the contribution from the PNA remains quite significant.

Full access
Robert Nissen
,
Roland List
,
David Hudak
,
Greg M. McFarquhar
,
R. Paul Lawson
,
N. P. Tung
,
S. K. Soo
, and
T. S. Kang

Abstract

For nonconvective, steady light rain with rain rates <5 mm h−1 the mean Doppler velocity of raindrop spectra was found to be constant below the melting band, when the drop-free fall speed was adjusted for pressure. The Doppler radar–weighted raindrop diameters varied from case to case from 1.5 to 2.5 mm while rain rates changed from 1.2 to 2.9 mm h−1. Significant changes of advected velocity moments were observed over periods of 4 min.

These findings were corroborated by three independent systems: a Doppler radar for establishing vertical air speed and mean terminal drop speeds [using extended Velocity Azimuth Display (EVAD) analyses], a Joss–Waldvogel disdrometer at the ground, and a Particle Measuring System (PMS) 2-DP probe flown on an aircraft. These measurements were supported by data from upper-air soundings. The reason why inferred raindrop spectra do not change with height is the negligible interaction rate between raindrops at low rain rates. At low rain rates, numerical box models of drop collisions strongly support this interpretation. It was found that increasing characteristic drop diameters are correlated with increasing rain rates.

Full access